Liquid Ring Vacuum Pump In Ceramic Vacuum Filter

Liquid Ring Vacuum Pump In Ceramic Vacuum Filter

Liquid Ring Vacuum Pump In Ceramic Vacuum Filter

Precision ceramic vacuum filter integrates electromechanical, microporous ceramics and ultrasonic technology. It relies on the suction and capillary action of liquid ring vacuum pump to realize solid-liquid separation. It is widely used in mining, metallurgy, chemical industry, environmental protection and other industries.

Precision ceramic vacuum filter features:

1. High vacuum (vacuum 0.09-0.098 MPa), low moisture filter cake.

2. The solid content of filtrate is less than 50 ppm. It can be reused to reduce emissions.

3. Compared with the traditional filter equipment, the energy consumption can be saved by more than 90%, the energy consumption is low and the operation cost is low.

4. Compared with traditional ceramic filters, filter cake washing is added, which is suitable for washing materials.

5. The use of PLC and computer combined with automatic valve control, high degree of automation, reduce labor intensity.

6. Compact structure, small area, easy installation and maintenance. Liquid Ring Vacuum Pump in Ceramic Vacuum Filter

7. The advanced drainage system can be used under any working conditions.

Precision Ceramic Vacuum Filter Principle :

Slurry suction zone: When working, the filter plate immersed in the slurry is combined with vacuum pressure under capillary action, and the surface is adsorbed into a layer of filter cake. The filtrate enters the distribution valve through the filter plate to the drainage tank.

Leaching area: After the filter cake is turned out of the slurry hopper, the filter cake is sprayed and washed.

Drying zone: The filter cake continues to dehydrate under the action of high vacuum force of water ring vacuum pump.

Discharging area: In the absence of vacuum, the scraper discharges automatically.

Backwashing: Industrial water or filtrate enters the ceramic plate through a distribution valve and is cleaned from inside to outside. Clean the blocked micropore. After a period of using the ceramic plate, the ceramic plate can be cleaned by the combination of ultrasonic wave and low concentration acid in order to keep the high efficiency of using the ceramic plate.

Effect diagram of ceramic filter:

Main components: filter board, main engine, air-water mixed constant pressure backwashing system, control system.

Liquid-Ring-Vacuum-Pump-in-Ceramic-Vacuum-Filterhttps://vacuumpumps.ir

liquid ring vacuum pump Application :

At present, liquid ring vacuum pump has been widely used in the dewatering of non-ferrous metals, rare metals, ferrous metals, non-metallic concentrates and tailings in mines, oxides, electrolytic slag, leaching slag, dewatering of slag and acid treatment of waste sewage sludge in chemical industry. Material fineness ranges from – 200 to – 450 meshes and various superfine materials.

کاربرد پمپ وکیوم در صنعت آجر،کاشی و سرامیک

کاربرد پمپ وکیوم در صنعت آجر،کاشی و سرامیک

کاربرد پمپ وکیوم در صنعت آجر،کاشی و سرامیک

پمپ خلا(وکیوم) برای صنعت آجر و سرامیک با بهبود مستمر سطح زندگی مردم ، نیازهای تزئینی افراد برای ساخت سرامیک نیز بیشتر و بیشتر می شود.

به خصوص سبک سنگ مرمر طبیعی را در مکان هایی مانند مبلمان منزل دوست دارند. با این حال ، اگر از سنگ مرمر و سایر مواد برای ساخت آجر استفاده شود ، مهم نیست که در استخراج مواد یا ساخت آجر ، منابع انسانی و مادی بیشتری مصرف می شود ، گران است. در همان زمان ، با توجه به رقابت شدید در بازار سرامیک ساخت و ساز ، به منظور گسترش سهم بازار ، تولید کنندگان سرمایه گذاری بیشتری در محصولات با تکنولوژی بالا (مانند کاشی های لعاب رنگ لعاب فعلی ، چاپ جوهر افشان و سایر محصولات ثانویه) انجام داده اند. پخت کاشی های کامپوزیت ریز بلورین) ضمن کاهش هزینه ها و افزایش طرح های محصول. فناوری این محصول نسبتاً بالغ است ، اما هزینه تولید هنوز زیاد است و محصول نهایی نمی تواند به سنگ سنگ یا اثر دست انداز برسد.

کاربرد وکیوم پمپ در صنعت آجر،کاشی و سرامیک

بنابراین ، چگونگی تولید نوعی کاشی و سرامیک با هزینه تولید کم و دستیابی به موفقیت انقلابی در بافت الگو ، مواد و فناوری تولید ، موضوع داغی در صنعت سرامیک سازی است. در تولید آجر ، کاشی های بام ، چینی و سرامیک های صنعتی ، علامت مهم کیفیت این است که هیچ محصول کاویتاسیون وجود ندارد. پس از شلیک ، سرامیک های حاوی چنین حفره هایی ممکن است در کوره ، در موارد شدید حتی کل دسته ، از بین بروند. در آجر ، این نقص کیفی معمولاً سالها طول می کشد تا ظاهر شود. در زمستان ، آب به منافذ سطح نفوذ کرده و آنها را می شکند. پمپ برای صنعت آجر و سرامیک خلا(وکیوم) جز component اصلی پردازش سرامیک است. به خصوص در میکسرها و اکسترودرها ، فناوری خلا می تواند ترکیبات رس دگاس را ایجاد کند ، بنابراین از بین بردن درگیری هوا در مرحله فشار / اکستروژن ، بنابراین محصولات قالب گیری تقریباً بدون منافذ را تضمین می کند. این همچنین پایداری ابعادی آنها را بسیار بهبود می بخشد ، از تغییر شکل قبل از خشک شدن جلوگیری می کند و از دقت ابعاد محصول نهایی اطمینان می یابد.

کاربرد پمپ خلاء در صنعت آجر،کاشی و سرامیک

پس از بارگیری خشت آجر در اکسترودر ، از خلا برای حذف هوا استفاده می شود ، بنابراین از ایجاد حفره و ترک خوردگی بعدی جلوگیری می کند. خاک رس سرامیکی مشابه خشت آجری ابتدا در مخلوط کن قرار داده می شود و تحت فشار آب یا بخار قرار می گیرد تا مخلوط یکنواختی ایجاد شود. سپس به اکسترودر منتقل شده و تحت فشار زیاد به داخل قالب فشار داده می شود. سپس مواد به طول مناسب اکسترود شده ، خشک و شلیک می شوند. ذوب خلا(وکیوم) ، صنعت تولید آجر ، سرامیک صنعت خلا(وکیوم) برای متالورژی ، صنعت آجر و سرامیک بخش بسیار مهمی است. می تواند برای جلوگیری از اکسید شدن فلز به دلیل دمای بالا در حین فرآوری استفاده شود. آب و هوای موجود در آجرها و سرامیک ها با خلا(وکیوم) تخلیه می شود تا از کیفیت آنها اطمینان حاصل شود. محصولات قابل استفاده: سری پمپ خلا valve سوپاپ کشویی ، سری پمپ خلا(وکیوم) چرخشی ، واحد خلا unit ، سری پمپ خلا(وکیوم) حلقه آب. پمپ خلا(وکیوم) پره روتاری روغن کاری شده در چنین کاربردهایی مورد استفاده قرار گرفته است. اکنون ، سیستم جدید گاززدایی از خاک رس معرفی شده است که با همکاری نزدیک با کارخانه آجر طراحی شده است. جز core اصلی سیستم خلا(وکیوم) ، پمپ خلا(وکیوم) پره ای دوار خشک است. هوا و بخار آبی که بدون روغن و آب می گیرد را فشرده می کند. این سیستم به سیستم فیلتر ، خنک کننده آب و کنترل ، با دو اندازه مجهز شده است.

vacuum pump For Brick And Ceramic Industry

vacuum pump For Brick And Ceramic Industry

vacuum pump For Brick And Ceramic Industry

With the continuous improvement of people’s living standards, people’s decorative requirements for building ceramics are also getting higher and higher. People especially like the style of natural marble stone in places such as home furnishing. However, if marble and other materials are used to make bricks for laying, no matter in material mining or brick manufacturing, more human and material resources are consumed , expensive.

At the same time, due to the increasingly fierce competition in the construction ceramic market, in order to expand market share, manufacturers have invested more in high-tech products (such as the current underglaze color glazed tiles, ink-jet printing and other secondary firing microcrystalline composite tiles) while reducing costs and increasing product designs. The technology of this product is relatively mature, but the production cost is still high, and the finished product can not reach To stone texture or bump effect. Therefore, how to produce a kind of ceramic tile with low production cost and revolutionary breakthrough in pattern texture, material and production technology is a hot issue in the construction ceramics industry.

In the production of bricks, roofing tiles, porcelain and industrial ceramics, the important sign of quality is that there is no cavitation products. After firing, ceramics containing such cavities may be destroyed in the kiln, in extreme cases even the entire batch. In bricks, this quality defect usually takes years to appear; in winter, water seeps into the pores of the surface and breaks them.

pump-for-brick-and-ceramic-industry

Vacuum is the main component of ceramic processing. Especially in mixers and extruders, vacuum technology can Degas clay compounds, thus eliminating air inclusions in the pressing / extrusion stage, thus ensuring the molding products with almost no pores. This also greatly improves their dimensional stability, avoids the deformation before drying, and ensures the accurate dimensional accuracy of the finished product.

After loading the brick clay into the extruder, the vacuum is used to remove the air, thus preventing cavitation and subsequent brick cracking. Similar to brick clay, ceramic clay is first put into the mixer and pressurized with water or steam to form a uniform mixture. It is then transferred to the extruder and pressed into the die under high pressure. The material is then extruded to a suitable length, dried and fired.

Vacuum smelting, brick, ceramic manufacturing industry vacuum technology for metallurgy, brick and ceramic industry is a very important part. It can be used to prevent metal from being oxidized due to high temperature during processing. The water and air in the bricks and ceramics are evacuated by vacuum to ensure the quality they have.

Applicable products: slide valve vacuum pump series, rotary vane vacuum pump series, vacuum unit, water ring vacuum pump series.

Oil lubricated rotary vane vacuum pump has been put into use in such applications. Now, a new clay degassing system named is introduced, which is designed in close cooperation with the brick factory. The core component of the vacuum system is a dry rotary vane vacuum pump. It compresses the air and water vapor it takes in without oil or water. The system is equipped with filter, water cooling and control system, with two sizes.

Vacuum Systems

Vacuum Systems

Presentation on theme: “Modern Devices: Chapter 4 – Vacuum Systems”— Presentation transcript:

1 Modern Devices: Chapter 4 – Vacuum Systems
Modern Devices: The Simple Physics of Sophisticated TechnologyCopyright © John Wiley and Sons, Inc.Chapter 4 – Vacuum SystemsEnabling High-Tech IndustriesModern Devices:The Simple Physics of Sophisticated TechnologybyCharles L. Joseph and Santiago Bernal

2 Vacuum Chamber Technology
Modern Devices: The Simple Physics of Sophisticated TechnologyCopyright © John Wiley and Sons, Inc.Fig. 4.1 A large floor-standing vacuum chamber. At the left is an ion vacuum gauge (top) and valve with rubber hose to roughing pump (bottom). Numerous access ports (electrical feedthroughs, window ports, and blanks) are shown on the circumference. A cryopump is shown attached underneath chamber.Vacuum technology is needed for a wide variety of advanced instrumentation and manufacturing methods. Creating a vacuum is simply a matter of pumping the gasses out of a sealed container, known as a chamber or tank. Ultimately, the achievable level of vacuum is set by the pumping speed compared to the residual leak rate.Vacuum chambers come in all shapes and sizes. Most have various ports to feedthrough electrical signals or to manipulate mechanically items inside the chamber.Vacuum Chamber Technology

3 Operating ranges of pumps and gauges
Modern Devices: The Simple Physics of Sophisticated TechnologyCopyright © John Wiley and Sons, Inc.Figure 4.2 The normal operating ranges of various type of pumps (red) and gauges (blue). The three classifications of vacuum are shown at the top.Operating ranges of pumps and gaugesUHVHigh Vac.Rough VacuumVenturi PumpMechanical PumpSorption PumpThermocouple GaugeDiffusion PumpTurbomolecularCryopumpIon PumpUHV Ion Gauge (hot filament)Pressure (Torr)

4 Vacuum Chamber Technology
Modern Devices: The Simple Physics of Sophisticated TechnologyCopyright © John Wiley and Sons, Inc.Fig. 4.3 Cross-sectional diagrams of the two type of vacuum sealing mechanisms. The sealing surfaces as depicted are on the top and bottom surfaces. The groove must be wide enough to allow the O-ring to deform, making a seal. For a gasket, the harder knife-edge flange cuts a sealing grove into the softer gasket material.Hallow tube to establish a sealed volume between vacuum componentsASA-style sealTop and bottom O-ring vacuum sealing pointsConflat SealSeal by cutting intocopper gasketThere are two basic types of seals used for connecting two vacuum tank pieces together: 1) rubber or Viton O-rings pinched between two metal surfaces and 2) copper or silver-plated copper gaskets sandwiched between two surfaces with hard knife edges. Ultrahigh vacuums (UHV) can only be achieved with metal gasket seals. UHV chambers that do have O-rings, those portions are isolated from the main chamber via a UHV valve.Vacuum Chamber Technology

5 Vacuum Chamber Technology
Modern Devices: The Simple Physics of Sophisticated TechnologyCopyright © John Wiley and Sons, Inc.Figure 4.4 An assortment of O-rings and copper gaskets along with a flanges. One feedthrough flange with three electrical connectors is shown at top center.Vacuum Chamber TechnologyThere are several standard configurations for O-rings and gaskets, as well as a number of vacuum quick-connection flange systems. For simplicity, the ASA O-ring and the CF Conflat gasket systems are shown in several sizes.O-rings can be reused many times, but copper gaskets are generally used only once. Copper gaskets, however, remain excellent seals for years if undisturbed.

6 Physics of some vacuum gauges
Modern Devices: The Simple Physics of Sophisticated TechnologyCopyright © John Wiley and Sons, Inc.Thermocouple JunctionHeatedFilamentHallow Pipe toVacuum ChamberElectricalContactsi2 i1Physics of some vacuum gaugesThe physics behind a TC can be understood in terms of the responses of various metal alloys to temperature. When two ends of a wire are held at two different temperatures, a small voltage potential of a few millivolt (mV) is observed between the two ends. If two wires of different alloys are subjected to the same temperature disparity, one will have a slightly higher voltage than the other. A thermocouple junction is created if the two ends are connected together and share a common DT.This device is transformed into a vacuum pressure measurement by continually adding a fixed amount of heat via the filament. The amount of residual gas in the chamber impacts the amount of convective cooling and in turn, determines the equilibrium temperature at the TC junction end. The net current flowing through the TC measures the pressure.A thermocouple (TC) gauge is perhaps the most widely used since its operating range starts at the limits of mechanical vacuum gauges and ends at the crossover pressures for starting most HV or UHV pumps.Figure 4.5 The anatomy of a thermocouple (TC) gauge. The interior volume of the gauge has the same vacuum as the chamber, usually being connected through a hallow pipe (right) with a threaded end. The resistance of the TC is set by rate of cooling, which is proportional to the amount of residual gas.

7 Physics of some vacuum gauges
Modern Devices: The Simple Physics of Sophisticated TechnologyCopyright © John Wiley and Sons, Inc.Ion collectorThermionicEmissionFilamentHallow metaltube to vacuumGlassTubeGridFigure 4.6 A hot cathode ion gage functions by passing a current and resulting voltage drop through a resistive material that heats up, emitting electrons into the vacuum. A series of rings connected to the positive volt side of the DC voltage, accelerating the free electrons towards the center. While these rings collect some electrons, many pass through, ionizing the residual gas. The current between the ion collector and the grid is proportional to the residual pressure.Physics of some vacuum gaugesThe UHV sensor of choice is the hot cathode ion gauge. The voltage across the resistive hot filament is typically 30 Vdc and generates a 10 mA (0.01 Amps) current of thermionic free electrons. These free electrons are attracted towards the grid, which biased at approximately +150 to +200 Vdc.While hot cathode ionization gauges have linear response over 10-4 to torr, all ion-gauge measurements are seriously affected by gas composition. For example, He gas only produces of the signal that N2 gas does,

8 via venturi, mechanical, or sorption pumps
Modern Devices: The Simple Physics of Sophisticated TechnologyCopyright © John Wiley and Sons, Inc.mufflerFigure 4.7 In a venturi pump, a gas flows through a restriction, causing the pressure to drop. An opening (bottom) pulls air from the volume to be evacuated. Only low-quality, rough vacuums can be established with this device.Low vacuumvia venturi, mechanical, or sorption pumps

9 via venturi, mechanical, or sorption pumps
Modern Devices: The Simple Physics of Sophisticated TechnologyCopyright © John Wiley and Sons, Inc.Right Sorption Pump without Styrofoam sleeveLeft Sorption PumpStyrofoam sleeve tohold liquid nitrogenValveVenturiPumpThermocouple& gaugeMetalHoseFigure 4.8 A pair of sorption pumps along with supporting equipment is shown. These pumps function by cooling the residual gas from the chamber to the point where it condenses to liquid form. The pictured pump station has valves so one or both sorption pumps can be used and gauges to measure two stages of vacuum.Low vacuumvia venturi, mechanical, or sorption pumpsPumps are classified into two types: gas transfer and gas capture. A sorption pump is a gas capture type. It pulls a vacuum by trapping and condensing most gases into the liquid phase. Eventually, gas capture pumps become full, must be taken off line, and heated to drive out the captured gas.

10 via diffusion, turbomolecular, or cryogenic pumps
Modern Devices: The Simple Physics of Sophisticated TechnologyCopyright © John Wiley and Sons, Inc.Oil reservoirTo roughingPumpSeparateLN2 TrapVacuum ChamberExteriorflow ofcoolingwaterHeating elementFigure 4.9 A schematic representation of a molecular diffusion pump is shown. A heating element causes a special oil of large, complex molecules to boil, sending small amounts of oil upward as depicted by the gray arrows. The oil strikes deflectors and is gravitationally pulled back towards the oil reservoir, dragging residual gas molecules down to the lower portion of the pump. A roughing pump continuously removes the slightly over-pressurized gas caused by the oil flow.High Vacuum (HV)via diffusion, turbomolecular, or cryogenic pumpsIn contrast to the gas-capture sorption pump, the molecular diffusion pump is a gas transfer type. A foreline pump must first be used to achieve a vacuum at or below the crossover point. Then the chamber can be opened to the diffusion pump, but the foreline pump must be used a second time to remove the transferred exhaust from this main pump.

11 via diffusion, turbomolecular, or cryogenic pumps
Modern Devices: The Simple Physics of Sophisticated TechnologyCopyright © John Wiley and Sons, Inc.Venturi  8K He15 K cold vanes to trap N2, O2CompressorPressurizedHe gas inputHe gas return80K cold head to trap H2OReflective, 80K ShieldFigure 4.10 A cryogenic pump operates by dramatically changing the pressure of He gas at two points in the cycle. The sudden drop in the He pressure causes it to go from approximately room temperature to about 10 degrees above absolute zero. The helium is connected to a series of vanes, which become sufficiently cold to freeze the residual gas from the vacuum chamber.High Vacuum (HV)via diffusion, turbomolecular, or cryogenic pumpsA Cryopump is an oil-free high-vacuum pump of the gas capture type. Cryopumps, properly known as cryogenic pumps, are similar to sorption (cryosorption) pumps, except portions of the pump are substantially colder. The basic physics behind the cryopump is to create an ultimate refrigerator and attach a cold finger to a series of progressively larger cold surfaces. The primary requisite is to get various surfaces sufficiently cold that various gas constituents are frozen or adsorbed onto one of several surfaces and held there for extended periods. It normally takes about 2 hours before a cryopump gets down to operating temperatures. These pumps require extensive roughing to vacuum pressures of ~50 microns (~5 x 10-2 torr) on the pump itself prior to turning on the compressor.

12 Ultrahigh Vacuum (UHV)
Modern Devices: The Simple Physics of Sophisticated TechnologyCopyright © John Wiley and Sons, Inc.Figure 4.11 Ion pumps produce strong internal electrical fields, which accelerate the electrons and positively charged molecules. Many of these charges strike titanium or titanium and tantalum plates releasing a few Ti or Ta atoms, which chemically bond with gas molecules and then become adsorbed onto the interior walls of the pump in a process known as gettering. The sequence of events also produces more ions, which continue the pumping process.Ultrahigh Vacuum (UHV)via ion pumpsIon pumps are the best choice for UHV chambers, since these pull the hardest vacuums, as well as are clean, vibration free, and can be baked. Ion pumps also have low power consumption and long operating lifetimes despite being a gas capture type pump.

OIL-SEALED PUMPS AND BACKSTREAMING

OIL-SEALED PUMPS AND BACKSTREAMING

OIL-SEALED PUMPS AND BACKSTREAMING

The vacuum industry has recently seen a major shift from oil-sealed mechanical pumps for roughing and backing applications to oil-free pumps of various types. Oil-free pumping continues to penetrate more and more applications and industries. Why the shift? Well, oil-sealed pumps contain oil and that oil can contaminate a process or product. It’s that simple, but at some point, it becomes necessary to evaluate the necessity of making the oil vs. oil-free decision. The applications of roughing pumps are so wide-ranging and diverse that it’s virtually impossible to make any categorical judgments. Each application, then, requires that a specific analysis and judgment be made, and these require an understanding of the sources of possible pump oil contamination along with the mechanism of oil transfer from a pump to a process.

First, though, there are a number of ancillary considerations that might have an impact on an oil-free vs. oil-sealed decision. Oil-sealed pumps are extremely reliable. They have been built and improved for decades, and they require little periodic maintenance except for oil changes. Kits are available to rebuild pumps that have become damaged or to replace worn parts. The flip side is that used oil is regarded in most areas as toxic waste, which makes it difficult and expensive to get rid of. It’s also messy and potentially dangerous, as anyone who’s slipped on spilled oil can attest. Barring these considerations, it’s the possibility of contamination that’s the most common decision driver.

VAPOR-STATE TRANSFER

In applications where the oil-sealed roughing pump is plumbed directly to the chamber, direct vapor-state transfer from the pump to the chamber is the major source of oil contamination. If in doubt as to whether oil vapor contamination is occurring in a given system, place a drop of water on an inner surface of the chamber to see if it wets or beads. This is a very sensitive test, since the condensed oil will spread in a film a monolayer thick over the entire inner surface.

This means that liquid oil will cover all surfaces and not be localized to a particular area, say near the roughing line. When a pump operates continually, the oil within the pump will become hotter and hotter, due to simple mechanical energy heat transfer, until some maximumtemperature is achieved. The increase in oil temperature will result in an increase in oil vapor pressure since the vapor pressure is a function of temperature.

During the first part of a pumpdown cycle where viscous flow conditions obtain, little oil vapor transfer will occur due to the continual impacts of oil vapor molecules with air molecules. Backstreaming oil vapor molecules will lose their energy upon impact and be swept back into the pump through entrapment.

Once the pressure falls into the molecular flow regime, however, these impacts cease and oil vapor transfer begins to occur at a rate governed by the vapor pressure of the oil at whatever temperature the oil has reached. The effective vapor pressure of the oil is usually a function of its quality. Undistilled or poorly distilled oil will contain light fractions (low boiling point components) which will volatilize at low temperatures.

A simple practical test is to sniff the inlet of a hot pump. If a fishy odor is detected, the oil is undistilled or of poor quality. High quality, vacuum-distilled oil will be either odor-free or close to it. Obviously, using a high quality oil will provide lower backstreaming rates. Check the manufacturer’s vapor pressure specs at elevated temperature, not at room temperature. Some hydrocarbon, high lubricity, diffusion pump oils make excellent mechanical pump fluids with low(er) backstreaming rates.

Additional problems in vapor-state transfer occur due to extremely high temperatures that arise in the oil film sealing the rotating vanes to the pump cavity. These high temperatures are caused by mechanical friction at these points, and they can be high enough to cause chemical breakdown of the oil to the point where light fractions, which backstream easily, are broken from the hydrocarbon chains.

The effects of temperature on the pump’s oil vapor and resultant backstreaming rate should be considered in light of the fact that the backstreaming occurs constantly as long as the pump is operating in the molecular flow regime. This really means that hydrocarbon contamination is being continuously fed into the chamber.

NON-VAPOR PRESSURE TRANSFER

Transfer of liquids from the pump’s inlet into the pumping line can occur due to several mechanisms. The simplest occurs whenever the pumping line stays under vacuum when the pump is shut off or as the result of apower failure. Pressure from gases trapped within the pump or even through the pump from atmosphere literally forces some of the pump oil into the pumping line. This effect is often called suckback. Many pumps have a built-in valve or metering system to reduce this effect, but it can still happen and once is enough. In practice, an automatic vent valve should be included in the pumping line to vent the inlet line when the pump shuts off.

Additional liquid/vapor backstreaming occurs due to droplets of hot oil that can be physically flung from the pump’s inlet during operation due to mechanical breakdown of the oil films sealing the vane/body interface.

A slightly similar effect occurs when microbubbles of oil break on the surface. This is most often caused by either the expansion of trapped light gases such as helium or from the almost explosive expansion of condensed gases, such as liquid water which can be converted into steam. When the bubble expands and breaks, the surface tension is such that the bubble explosively breaks down and imparts sufficient energy to the oil to allow it to leave the pump either as liquid or vapor.

An important transfer mechanism is surface creep. Oil, released into the pumping line will tend to spread along any surface and finally migrate into the process chamber. Although the migration rate is low, it is a continuous effect and will finally reach the chamber. When the pumping line is at viscous flow pressures, little or no surface creep will occur due to continual impacts with the gases being pumped from the chamber. At lower, molecular flow pressures, the possible impacts with surface oil are too few to stop its motion along the pumping line toward or into the chamber.

 VACUUM PUMP TRAPS

There are a number of backstreaming traps commercially available. They are all effective to some extent, but they require careful handling and maintenance to ensure that, during cleaning or regeneration to remove trapped oil, that the oil is not allowed to escape into the upstream side of the trap. Many traps are regenerated by heating while being pumped on, and this procedure would easily allow the oil vapor to leave the trap from both the inlet and outlet ports.

Additionally, most traps have a room temperature surface path through them that allows surface creep to pass slowly through them. Although they can be effective, they can also lead to a fool’s paradise if it assumed that their installation will solve backstreaming problems.

PRACTICAL CONSIDERATIONS

Although oil vapor transfer through backstreaming is a potential problem for many processes, it is useful to examine the actual effects in light of the process to determine whether or not the potential problem can be dealt with or simply lived with. In many cases, it is possible to confine the use of a mechanical pump to viscous flow and then valve or shut it off when not in use to severely limit backstreaming. If the risk to the process is too great to take the chance, it is possible to switch to one of the many oil-free pumps now on the market and sidestep the problem entirely.

vacuum leak detector

vacuum leak detector

vacuum leak detector

1. How does the Prowler sensor work?

As refrigerant gas enters the sensor, a tiny chemical reaction occurs that results in an electrical change inside the sensor element. This change (which is completely reversible and not depleting) is then detected by a microprocessor (computer chip) that translates the chemical reaction into an alarm signal.

2. How does the Prowler sensor compare to heated sensor leak detectors?

Besides having superior sensitivity, especially to the newer HFC refrigerants, the Prowler sensor also operates at a lower temperature than heated sensors. This is an advantage because it draws less current and doesn’t require the use of rechargeable batteries. Another advantage is that it can be used safely in combustible atmospheres.

3. What happens when the Prowler detects that a leak is present?

When refrigerant gas enters the sensor, the Prowler detection circuit initiates three indicators that show a leak is present. The user hears an audio alarm (when not manually muted), feels a vibration in the handle, and sees the bar graph line(s) appearing on the LCD screen. Both the audio and vibration alarm are constant no matter how large the concentration of the gas. The LCD bar graph changes depending on the concentration of the gas in the sensor. The bar graph is also independent from the sensitivity level selected.

4. How does the Prowler work so that the source of the leak can be located?

Unlike other leak detectors, the Prowler incorporates several innovative high technology features that allow the user to find the source of the leak without requiring any manual adjustments. Advanced computer software constantly monitors the surroundings for the presence of refrigerant gas. The detector then automatically calibrates itself so that it alarms only when it senses an increase in the level of refrigerant as the source of the leak is approached. The proprietary software then “filters” out and virtually eliminates any unwanted (false) alarm signals that occur away from the leak source.

 5. Will the Prowler detect large leaks without any manual adjustments?

Yes. However, if the Prowler alarms initially close to a large leak and then stops alarming before the source of the leak can be pin pointed, it means that the concentration of refrigerant in the area near the leak is similar to the concentration at the leak source. In this situation, it is important to move the sensor away from the leak source (usually above the suspected leak source) for 5 to 10 seconds to allow the sensor to self calibrate to a lower concentration before searching the area a second time. The detector will then alarm again closer to (or at) the source of the leak. Holding the probe away in this manner will also give a more accurate indication of the leak size on the bar graph.

6. Will the Prowler alarm when entering a work area contaminated with refrigerant?

Yes. Nevertheless, you must always turn on the Prowler outside of the work area (in clean air) and allow it to complete the warm up cycle before entering an area where a large leak is suspected. The Prowler will alarm initially but will automatically self calibrate to the surroundings and will not alarm again until a larger concentration closer to the source of the leak is detected.

7.  Why does the alarm stop sounding when the sensor is held static at a leak source?

This is normal and demonstrates how the detector automatically resets (self calibrates) itself to the ambient. Once the Prowler alarms near the area of the leak, it should be moved away from the leak and back again to verify the exact location and size of the leak. If the leak is large (more than five bars), it may be necessary to move the sensor away from the leak area for 5 to 10 seconds.

8.  Can the Prowler determine the size of the leak?

Yes, once the leak has been pin pointed the maximum number of bars on the LCD screen will give the user an idea of the size of the leak. If the leak is large, (5 bars or more) it may be necessary to hold the detector away from the leak for 5 to 10 seconds in order for the circuit to reset completely and to give an accurate indication of the leak size.

 9.  What does the Prowler do when it is turned on and is going through the warm up mode?

When turned on, the Prowler begins to energize and condition the sensor for use.  During this period, the unit will beep at a slow rate and the LCD bar graph will display the conditioning progress by gradually increasing.  Warm up is complete when all 10 bars are shown on the display. The beep rate will also increase and the sensitivity level will default to Medium.  NOTE: The bars on the bar graph may increase up initially and then down again before increasing to 10 full bars – this is normal.

10. How should the Prowler be tested to make sure it is working properly prior to leak searching?

The preferred method to test the Prowler is with the Leak Test Vial that is included with the leak detector.  Although the Vial does not contain refrigerant gas or liquid (this is prohibited), the media in the Vial accurately simulates a small to medium refrigerant gas leak.  To test with the Vial, power on the Prowler by depressing the on/off button, allow the instrument time (up to 20 seconds) to energize the sensor, remove the plastic label seal on the top of the Leak Test Vial, and place the sensor closer to the small hole in the top of the Vile.  The beep rate should increase and the Leak Size Bar Graph should display a minimum of three bars.  The detector will calibrate itself to the Leak Test Vial if the sensor is held static close to the hole in the cap and will not alarm again until it is moved away and allowed to reset.  Consecutive testing at the cap and moving away from Vial will eventually result in the detector calibrating itself to the Vial.  In this case, the Prowler may require additional time away from the Vial in order to reset before it will alarm again at the Leak Vial.  Never use the Leak Test Vial with the cap removed from the bottle. NOTE: If the detector has been out of use for weeks, it may be necessary to set the sensitivity level to HI initially when testing the Prowler with the Leak Test Vial.

11. Is there a way to test the Prowler with Refrigerant Gas before leak checking:

If it is necessary to test the Prowler with refrigerant gas, a small leak can be simulated by removing a Schrader valve cap on an access port of an HVAC system and waiting a few minutes for the accumulated gas to escape. Cracking open and quickly closing the valve on a cylinder of refrigerant is another option; however, the area around the valve should be fanned to allow the gas to dissipate before testing with the Prowler. This test method is not advisable because it is difficult to control the amount of gas emitted from a refrigerant cylinder. Opening and closing the valve on a cylinder typically emits a large volume of refrigerant, which is not representative of an actual leak in an HVAC system. If the Prowler is tested this way, the procedure for finding large leaks (see above) should be followed. If the procedure for finding large leaks is not followed, the automatic calibration feature of the Prowler may cause it to appear to be insensitive.

12. Will the Prowler sensor become damaged if it is exposed to a heavy stream of gas coming from the valve of a refrigerant cylinder?

No. However, exposing the sensor to a heavy stream of refrigerant will cause the sensor to “saturate” and it may take up to 15 or more seconds for the sensor to automatically calibrate and reset to its maximum sensitivity level. For this reason, using a refrigerant cylinder is not an advisable means to test the sensitivity of the Prowler to any particular refrigerant.

13. How can you claim the sensor will last up to 10 years?

The Prowler utilizes sensor technology that is based on room monitoring where sensors are required to be functioning continuously for years. Sensors used for this purpose cannot be depleted when contaminated with refrigerant or require any adjustment to operate at peak performance after running continuously for long periods. By converting continuous use into daily use, for a typical HVAC technician, it was determined using controlled test methods that the sensor would last more than 10 years (under ideal conditions). The sensor life test data was derived after testing the Prowler sensors continuously over a period of time.

question for vacuum pump and vacuum gauge

question for vacuum pump and vacuum gauge

question for vacuum pump and vacuum gauge

1. I don’t have a micron gauge so I leave the pump on the system for two to four hours, is this enough?

You can’t tell for sure. Without a micron gauge we do not know if the oil in the pump is clean. The oil in a vacuum pump acts as a blotter and absorbs all of the moisture and sediment in the system. As the oil becomes saturated, the efficiency of the pump is drastically reduced.


2. If I put new oil in now and run the pump the same period of time, am I safe?

Oil should be changed after every job and should only be changed when the oil is still hot. As the oil cools, the moisture separates from the oil and clings to the metal of the pump. Therefore, when changing the oil and not checking it with a micron gauge, you’re still guessing as to whether the pump can actually pull the proper vacuum to eliminate the moisture in the system.


3. I pull only from one side of the system using a micron gauge, but at times my gauge will jump up to a higher number. Is this right?

This can happen even if you pull on both sides of the system because there is a metering device to measure the pressure and refrigerant in the system. Air or moisture can be trapped in one side of the system and will eventually let go and therefore a higher reading on the micron gauge will occur. Sometimes moisture can be trapped in the oil of the compressor and when it escapes it will show up in the gauge.


4. I purchased a new micron gauge. How low of a vacuum should I pull?

Some manufacturers have a micron range that they want their system pulled down to, so therefore, JB can only suggest a micron reading. Our suggestion is to pull a system down to 250-300 microns only if you are also pulling a vacuum on the compressor. Going below 250 microns, you will start degassing the oil in the compressor and it will not be the same lubricating oil as it was originally. The oil will only degass and will not suck up into the vacuum pump.


5. It seems to take forever to pull down the system I am working on. Does this mean I have a leak or a lot of moisture in the unit?

Assuming that you are pulling on the high and low side of the system, did you remove the access valve cores? Leaving the cores in creates a big restriction and causes your vaccum to take a longer time to evacuate.


6. I bought a new micron gauge and I wanted to try it out with just my vacuum pump. I attached the gauge directly to the pump and it immediately went down. I then closed my blank off valve on my pump and the gauge went up very rapidly. Is the valve on my pump leaking?

No. The gauge is too close to the pump and it does not have a chance to equalize in pressure. To do this experiment correctly, connect your pump and a micron gauge to a small tank with only copper tubing or JB`s DV-29. Close the blank off valve as you did before and you will see a big difference in the reading.


7. You said with copper tubing, why not charging hoses?

Either copper tubing or metal hoses used in JB`s DV-29 are the only ways you can hold vacuum. Vacuum is critical for leaks, more so than refrigerant. Charging hoses, including environmental hoses, still permeate. Beyond permeation, where the hose ferrule is crimped to the hose, represents a potential leak under vacuum. Quick couplers with gaskets are not a good seal. When you screw down the male flare to the gasket quick coupler, the gasket goes into several contortions and will not seal properly. JB uses O-rings on our quick couplers and as you screw down the male flare you get a metal-to-metal seat and the O-ring lays around the flare to give it a perfect seal.


8. Then this means I cannot pull a vacuum on my system unless I use metal hose or copper tubing?

No. You can pull a vacuum with charging hoses, but when you want to blank off the system to check for leaks, you will need to use copper tubing or metal hoses.


9. I put my gauge connection to the pump when I am pulling a vacuum on a system, is this correct?

Many technicians do this for ease of hook-up, but remember with this set up you are actually reading what the pump is doing and not what the pump is doing to the system. To prove this theory, take a 50 foot coil of 1/4″ OD copper tubing, braze a flare on one end and a tee on the other. Attach a micron gauge to the male flare end, a gauge to the tee end, and a line from the tee to the pump. Turn the pump on and you will notice the side closest to the pump will be a lot lower than the other. Eventually, this will equalize out and give the same reading. This will occur in a system on which you are pulling a vacuum.

اهمیت گیج وکیوم در سیستم خلاء

اهمیت گیج وکیوم در سیستم خلاء

اهمیت گیج وکیوم در سیستم خلاء

گیج وکیوم در سیستم خلاء برای چیست – کاربرد گیج وکیوم در سیستم خلاء

۱٫ من میکرومتر ندارم بنابراین دو تا چهار ساعت پمپ را روی سیستم می گذارم ، آیا این کافی است؟

به طور قطع نمی توانید بگویید. بدون اندازه گیری میکرون نمی دانیم که روغن موجود در پمپ تمیز است یا خیر. روغن موجود در پمپ خلا به عنوان یک بلاتور عمل می کند و تمام رطوبت و رسوبات موجود در سیستم را به خود جذب می کند. با اشباع شدن روغن ، بازده پمپ به شدت کاهش می یابد.

۲٫ اگر الان روغن جدیدی بگذارم و در همان مدت زمان پمپ را کار کنم ، آیا من ایمن هستم؟

روغن باید بعد از هر کار تعویض شود و فقط در زمانی که روغن داغ است باید تعویض شود. با خنک شدن روغن ، رطوبت از روغن جدا شده و به فلز پمپ می چسبد. بنابراین ، هنگام تعویض روغن و بررسی نکردن آن با اندازه گیری میکرون ، هنوز حدس می زنید که آیا پمپ در واقع می تواند خلا proper مناسب را برای از بین بردن رطوبت در سیستم بکشد.

۳٫ من فقط از یک طرف سیستم با استفاده از یک میکرون سنج می کشم ، اما در بعضی مواقع سنج من به یک عدد بالاتر می رود. آیا این درست است؟

این امر حتی اگر دو طرف سیستم را بکشید ممکن است اتفاق بیفتد زیرا دستگاه اندازه گیری فشار و مبرد در سیستم وجود دارد. هوا یا رطوبت می تواند در یک طرف سیستم گیر بیفتد و در نهایت رها می شود و بنابراین میزان بیشتری از اندازه گیری میکرون اندازه گیری می شود. گاهی اوقات رطوبت می تواند در روغن کمپرسور محبوس شود و هنگام فرار از آن ، در سنج نشان داده می شود.

۴- من یک میکرون سنج جدید خریداری کردم. چقدر خلا باید بکشم؟

برخی از تولیدکنندگان محدوده میکرونی دارند که می خواهند سیستم آنها پایین بیاید ، بنابراین ، JB فقط می تواند خواندن میکرون را پیشنهاد کند. پیشنهاد ما این است که تنها در صورت کشیدن خلا on روی کمپرسور ، یک سیستم را به ۲۵۰-۳۰۰ میکرون کاهش دهید. با پایین رفتن از ۲۵۰ میکرون ، گاز زدایی روغن کمپرسور را شروع خواهید کرد و همان روغن روانکاری اولیه نخواهد بود. روغن فقط گاززدایی می کند و به پمپ خلا نمی خورد.

۵- به نظر می رسد که کشیدن سیستمی که روی آن کار می کنم برای همیشه لازم است. آیا این به معنی نشت یا رطوبت زیاد در واحد است؟

با این فرض که در سمت بالا و پایین سیستم می کشید ، آیا هسته شیرهای دسترسی را برداشته اید؟ با گذاشتن هسته ها محدودیت بزرگی ایجاد می شود و باعث می شود مدت بیشتری واکسن شما تخلیه شود.

اهمیت گیج وکیوم در سیستم خلاء

گیج وکیوم در سیستم خلاء برای چیست – کاربرد گیج وکیوم در سیستم خلاء

۶٫ من یک میکرون سنج جدید خریداری کردم و می خواستم آن را فقط با پمپ خلا my امتحان کنم. من سنج را مستقیم به پمپ وصل کردم و بلافاصله پایین رفت. سپس شیر خالی خالی را روی پمپم بستم و سرعت آن بسیار سریع بالا رفت. آیا شیر پمپ من نشت می کند؟

نه. اندازه گیری بسیار نزدیک به پمپ است و فرصتی برای برابر شدن فشار ندارد. برای انجام صحیح این آزمایش ، پمپ و میکرومتر خود را به یک مخزن کوچک فقط با لوله های مسی یا JB`s DV-29 متصل کنید. سوپاپ خالی را مانند گذشته ببندید و تفاوت زیادی در میزان قرائت خواهید دید.

۷٫ شما با لوله مسی گفتید ، چرا شیلنگ شارژ نمی شود؟

لوله های مسی یا شیلنگ های فلزی مورد استفاده در JB`s DV-29 تنها راه های نگهداری خلاuum هستند. خلاuum برای نشت بسیار مهم است ، بیش از مبرد. شلنگ های شارژ ، از جمله شیلنگ های محیطی ، هنوز نفوذ می کنند. فراتر از نفوذ ، جایی که فرول شلنگ به سمت شلنگ جمع می شود ، نشان دهنده نشت احتمالی در خلا است. اتصال دهنده های سریع دارای واشر مهر و موم خوبی نیست. وقتی شعله ور شدن نر را به اتصال سریع واشر می اندازید ، واشر به چندین انحراف تبدیل می شود و به درستی آب بندی نمی شود. JB از حلقه های O روی اتصال دهنده های سریع ما استفاده می کند و هنگامی که شما شلیک نر را پیچ می دهید ، یک صندلی فلزی به فلزی پیدا می کنید و حلقه O در اطراف مشعل قرار می گیرد تا مهر و موم خوبی داشته باشد.

۸- پس این بدان معنی است که من نمی توانم خلا on سیستم خود را بکشم مگر اینکه از شلنگ فلزی یا لوله های مسی استفاده کنم؟

خیر ، می توانید با شلنگ های شارژ خلا را بکشید ، اما وقتی می خواهید سیستم را بررسی کنید تا نشتی نداشته باشد ، باید از لوله های مسی یا شیلنگ های فلزی استفاده کنید.

۹٫ وقتی که دارم خلاuum سیستم را می کشم اتصال سنج خود را به پمپ قرار می دهم ، آیا این درست است؟

بسیاری از تکنسین ها این کار را برای سهولت در اتصال انجام می دهند ، اما به یاد داشته باشید با این تنظیمات شما در واقع می خوانید که پمپ چه کاری انجام می دهد و نه اینکه پمپ چه کاری برای سیستم انجام می دهد. برای اثبات این نظریه ، یک سیم پیچ ۵۰ فوت از لوله مسی ۱/۴ “OD بردارید ، یک سر آن را یک شعله ور کنید و از طرف دیگر یک سه راهی را فشار دهید. یک سنج میکرون را به انتهای شعله ور شدن نر ، یک سنج را به انتهای آن متصل کنید و یک خط از سه راهی به پمپ باشد. پمپ را روشن کنید و متوجه خواهید شد که نزدیکترین طرف به پمپ بسیار پایین تر از دیگری است. در نهایت ، این مساوی می شود و همان خوانش را می دهد. این در سیستم رخ می دهد که روی آن خلا می کشید.

 

گیج وکیوم عقربه ای
گیج وکیوم دیجیتال
گیج وکیوم نسبی
گیج وکیوم مطلق
گیج وکیوم جیوه ای
گیج وکیوم میلی بار
گیج وکیوم میلی متر جیوه
گیج وکیوم اینچ جیوه
گیج وکیوم مدرج
گیج وکیوم فشار
گیج وکیوم خلاء
گیج وکیوم دستی
گیج وکیوم کوچک
گیج وکیوم ارزان
گیج وکیوم دقیق
کارکرد گیج وکیوم
گیج وکیوم پیرانی
گیج وکیوم استیل
گیج وکیوم ۲ ساعت
گیج وکیوم ۶ ساعت
گیج بارومتریکگیج وکیوم بارومتریک
گیج وکیوم اتمسفریک
گیج ادواردز
گیج فایفر
گیج لیبولد
گیج وکیوم بوش
گیج وکیوم برند
گیج وکیوم برقی
گیج وکیوم DC
گیج وکیوم باتری
گیج وکیوم خارجی
گیج وکیوم ایرانی

همیشه سطح روغن را با روشن بودن پمپ خلا بررسی کنید

همیشه سطح روغن را با روشن بودن پمپ خلا بررسی کنید

همیشه سطح روغن را با روشن بودن پمپ خلا (وکیوم)بررسی کنید

پمپ های خلاac روتاری مهر و موم روغن برای استفاده در سیستم های آمونیا یا لیتیوم بروماید (آب نمک) در نظر گرفته نشده اند. هر دوی این سیستم ها باعث قفل شدن پمپ ها و غیرفعال شدن آنها می شوند. استفاده از پمپ های دوار مهر و موم روغن در هر یک از این سیستم ها ضمانت را باطل می کند. مهم- همیشه سطح روغن را در حالت پمپ بررسی کنید. دلیل این امر این است که اگر قبل از خاموش شدن پمپ ها خلا the شکسته نشود ، روغن موجود در پوشش خلا will موجود در کارتریج و محفظه ورودی را جستجو می کند. سپس سطح روغن در شیشه دید پایین می آید و ظاهر سطح روغن کم است. سپس اگر پمپ دوباره به خط سطح روغن پر شود و پمپ شروع به کار کند ، روغنی که دوباره به داخل کارتریج و محفظه مکش مکیده می شود دوباره به داخل درب لگد زده می شود و اکنون شما پر می شوید و روغن از بین می رود دسته (پورت اگزوز). حفظ عمر پمپ خود شامل برخی نکات عیب یابی است متقابل اندازه گیری های خلا Me دمای جوش آب مرجع متقابل در فشارهای تبدیل شده تست نشت دریچه ایزوله اصول خلا De عمیق شامل اطلاعاتی در مورد اندازه گیری تخلیه ، نحوه انتخاب پمپ خلا right مناسب ، استفاده از گیج سنج و نکات تخلیه است مقاله RSES در رابطه با روتاری مهر و موم روغن در اصول و کاربرد خلاac عمیق عیب یابی سنج دیجیتال / گرمای دیجیتال

IMPORTANT- Always check the oil level with the vacuum pump running

IMPORTANT- Always check the oil level with the vacuum pump running

IMPORTANT- Always check the oil level with the vacuum pump running

oil seal  rotary Vacuum pumps are not intended for use on Amonia or Lithium Bromide (salt water) systems. Both of these systems will cause the pumps to lock up and be rendered inoperable. Use of oil seal  rotary pumps on either of these systems will void the warranty.

IMPORTANT- Always check the oil level with the pump running.

The reason for this is that if the vacuum is not broken before pumps are shut down the oil in the cover will seek the vacuum still in the cartridge and intake chamber. Then the oil level will drop in the sight glass and give the appearance of a low oil level. Then if the pump is refilled to the oil level line and the pump started, the oil that got sucked back into the cartridge and intake chamber will be kicked back into the cover and now you’ll be over filled and the oil will shoot out the handle (exhaust port).

 

 

Keeping the Life of Your Pump includes some troubleshooting tipsCross Reference of Vacuum MeasurementsCross Reference Boiling Temperatures of Water at Converted Pressures

Isolation Valve Leak Test

Principles of Deep Vacuum includes information on measuring evacuation, how to select the right vacuum pump, using a vacuum gauge and evacuation tips

RSES article in association with oil seal  rotary on Deep Vacuum Principles and Application

Troubleshooting Digital Superheat/ Subcooling Gauge (SH35N-SH36N)

أسئلة يتكرر طرحها عن مضخات التفريغ

أسئلة يتكرر طرحها عن مضخات التفريغ

أسئلة يتكرر طرحها عن مضخات التفريغ

1. مضخة التفريغ الخاصة بي تعمل ولكن لا يمكنني الفراغ ، فلماذا لا؟

الموصل بين عمود المضخة وعمود المحرك إما تالف أو زلق. تأكد من إحكام البراغي المضبوطة على اللوح ذي العمودين.

2. ما سبب أهمية تغيير الزيت في مضخة التفريغ الخاصة بي؟

يعمل الزيت المناسب كخلاط في مضخة تفريغ ويمتص كل الرطوبة وغير القابلة للتكثيف. نظرًا لأن الزيت يتشبع بهذه الملوثات ، تنخفض كفاءة المضخة بشكل كبير. يضمن الحفاظ على نظافة الزيت في المضخة أن تعمل المضخة بأعلى كفاءة ويطيل عمرها.

3. هل يمكنني استخدام أي زيت في مضخة التفريغ الخاصة بي؟

ليس. زيت الفراغ ليس نقيًا ومنظفًا بدرجة عالية. تتم معالجة الذهب الأسود هيدروليكيًا ، مما يعني أنه يقوم بسلسلة من الخطوات التحفيزية ، مما يجعل الزيت عالي التكرير وأكثر لزوجة واستقرارًا. والنتيجة هي زيت معدني نقي ينبهك إلى التلوث بمجرد أن يصبح عكرًا أو حليبيًا.

4. لماذا من المهم تغيير الزيت عندما تكون مضخة التفريغ ساخنة أو الزيت عندما تكون مضخة التفريغ باردة؟

عندما تبرد المضخة ، تتم إزالة الرطوبة والملوثات من المضخة وبعد التصريف ، تلتصق الملوثات بجدران المضخة. عندما تملأ المضخة بزيت جديد ، حيث تسخن المضخة ، تختلط هذه الملوثات بالزيت الجديد ، مما يتسبب في تلوث الزيت الجديد بسرعة.

5. إذا كنت دائمًا أعمل بالمكنسة الكهربائية على أنظمة جافة ونظيفة ، فهل هناك طريقة لفحص الزيت في المضخة لمعرفة ما إذا كان ملوثًا وليس عليك تغييره بانتظام؟

يوصى بتوصيل ميكرومتر بالمضخة مباشرة ، وإذا كان الزيت نظيفًا يجب أن يصل إلى 50 ميكرون أو أقل. إذا لم يصل ميكرون متر إلى 50 ميكرون ، فهذا يشير إلى تلوث بالزيت ويجب تغييره.

6. بصرف النظر عن إزالة الهواء من النظام ، كيف تتخلص مضخة التفريغ الخاصة بي من الرطوبة في النظام؟

معظم مضخات التفريغ ذات المرحلتين منخفضة بدرجة كافية في الفراغ ذي المرحلتين لتقليل الضغط الجوي داخل النظام ، وبالتالي السماح للرطوبة بالغليان عند درجات حرارة منخفضة. عندما تتبخر الرطوبة ، يتم إزالتها بسهولة بواسطة المضخة.

7. ما هو فراغ غاز الصابورة وكيف يمكنني استخدامه؟

مع سحب الفراغ الأولي على النظام ، يكون صابورة الغاز مفتوحة ، مما يسمح للحجم الأولي للهواء في نظام الزيت بالدوران حتى لا يتلوث الزيت على الفور. عندما تبدأ المضخة في إيقاف التشغيل ، قم بإيقاف تشغيل صابورة الغاز وتبدأ المضخة في تقليل الضغط الجوي في النظام لغلي الرطوبة وعدم التكثيف.

8- ما هو صمام تفريغ الهواء؟

لا يختلف الصنبور الفارغ عن الصنبور. افتحها وستحصل على المكنسة الكهربائية التي تريدها عند تشغيل المضخة. أغلقها ولا يوجد فراغ عند تشغيل المضخة.

9. إذا استخدمت مضخة فراغ أكبر حجمًا من CFM ، فهل سأكون قادرًا على إنشاء سحب فراغ أسرع على النظام؟

في معظم الحالات لا. باستخدام مضخة فراغ في أنظمة تكييف الهواء من 1 طن إلى 10 أطنان ، لا ترى الفرق بين مضخة 3 CFM ومضخة 10 CFM. على سبيل المثال ، إذا قمت بوضع المضخة على النظام وفي غضون دقيقتين ستلاحظ أن المضخة تهدأ ولا يمكنك حقًا إخراج الهواء من العادم. هذا يعني أن CFM لم يعد موجودًا في النظام وأنك تعمل الآن مع الجزيئات. لذلك ، في هذه المرحلة ، إذا استبدلت المضخة 3 CFM بمضخة 10 CFM ، فلن يكون هناك تغيير في الفراغ والوقت.

10. ما هو الميكرون؟

يوجد 25400 ميكرون في البوصة. لذلك ، بمقياس مركب من 0 بوصة إلى 30 بوصة ، هناك 762000 ميكرون.

11. أستخدم المقياس الجانبي السفلي للفراغ ، هل هذا خطأ؟

بلى. لا يعرف المقياس الجانبي السفلي سوى الضغط الجوي ولا يمكنه استشعار الرطوبة أو المواد غير القابلة للتكثيف. مقياس الميكرون هو جهاز لقياس الحرارة لا يقرأ الضغط الجوي فحسب ، بل يقيس أيضًا الغازات الناتجة عن مضخة التفريغ عند غليان الرطوبة. على سبيل المثال ، إذا كنت تريد سحب فراغ على زجاجة ماء محكمة الغلق ، فإن الجزء السفلي من مقياس الضغط يقرأ فراغًا مثاليًا عند سحب فراغ. باستخدام الميكرومتر ، يخطرك على الفور من خلال قراءة الكثير بأن لديك مشكلة في نظامك.

12. لقد قمت برسم ميكرومتر فراغ للنظام على جهازي ولا يمكنني تصغيره. انظر الأسئلة الشائعة رقم 1. الاحتمال الآخر هو أن بعض الزيت ربما يكون قد دخل إلى مقياس الميكرون ويتم قراءته بشكل غير صحيح. الحل هو فرك الكحول المحمر بانتظام في تقاطع الميكرون ، والتخلص منه ، ولا تستخدمه (لا تستخدم طرف q ، أو طرف القماش ، أو أي مادة أخرى – استخدم الكحول السائل فقط). افعل هذا حوالي ثلاث مرات ، ثم حاول إنشاء فراغ بالقياس.

13. يمكنني إنشاء فراغ في نظامي ، لكن عندما أفراغه ، يرتفع قياس الميكرون بسرعة. هذا ليس بالأمر الجديد إلا إذا استخدمت أنابيب نحاسية أو خراطيم معدنية مرنة.

14. هل يمكنني تركيب ميكرون متر على مضخة فراغ جبل؟

لا يوصى بالقيام بذلك لأنك تقرأ ما تفعله المضخة وليس ما تفعله المضخة للنظام (انظر DV-29). يوصى بالشفرة في جزء الشفط من النظام وتثبيت القياس هناك.

15. ما مقدار تقليل الفراغ (أ) في النظام؟

يوصي بتمديد النظام إلى 250 ميكرون على الأقل والاحتفاظ به لمدة خمس دقائق على الأقل. في أي زيت بوليستر في النظام ، يوصى بتفريغ أقل بكثير لأنه من الصعب جدًا إزالة الرطوبة حتى مع الحرارة والفراغ.

16- لماذا يتراجع الميكرومتر (مقياس الفراغ) ببطء ويبدأ في الإمساك به بعد سحب الفراغ والتفريغ؟

والسبب في ذلك هو وجود المساواة في النظام. إذا خفضت الفراغ ، فسوف يتراجع ويثبت في نطاق أقل.

17. لماذا يجب فحص مستوى الزيت عند تشغيل المضخة؟

هذا لأنه إذا لم يتم كسر الفراغ قبل إيقاف تشغيل المضخات ، فسوف يبحث عن الزيت في غطاء الإرادة على الخرطوشة وغرفة المدخل. ثم ينخفض ​​مستوى الزيت في زجاج العرض ويكون مظهر مستوى الزيت منخفضًا. ثم إذا تمت إعادة تعبئة المضخة إلى خط مستوى الزيت وبدأت المضخة في العمل ، فإن الزيت الذي يتم امتصاصه مرة أخرى في الخرطوشة وغرفة الشفط يتم إرجاعه إلى الباب ، والآن تكون ممتلئًا وذهب الزيت. (منفذ العادم).

 

پرسش های متداول در باره پمپ وکیوم

پرسش های متداول در باره پمپ وکیوم

1. پمپ خلا (وکیوم) من کار می کند ، اما نمی توانم خلا بگیرم وکیوم نم کند چرا؟

اتصال دهنده بین شافت پمپ و شافت موتور یا خراب است یا می لغزد. اطمینان حاصل کنید که پیچ های تنظیم شده روی صفحه دو شافت محکم هستند.

2. چرا تعویض روغن در پمپ خلا (وکیوم)من اینقدر مهم است؟

روغن مناسب در پمپ خلا (وکیوم)به عنوان یک بلاتور عمل می کند و تمام رطوبت و غیر قابل تغلیظ را جذب می کند. با اشباع شدن روغن از این آلاینده ها ، بازده پمپ به طرز چشمگیری کاهش می یابد. نگهداری روغن تمیز در پمپ اطمینان از عملکرد پمپ در بالاترین راندمان و طولانی شدن عمر آن را می دهد.

3. آیا می توانم از هر روغنی در پمپ خلا(وکیوم) خود استفاده کنم؟

نه. روغن وکیوم به شدت خالص و شوینده نیست. طلای سیاه به صورت هیدرولیکی پردازش شده است ، به این معنی که یک سری مراحل کاتالیزوری را انجام می دهد و روغن را بسیار تصفیه شده ، چسبناک تر و پایدارتر می کند. نتیجه یک روغن معدنی شفاف است که به محض کدر شدن یا شیری شدن ، شما را از آلودگی آگاه می کند.

4. چرا مهم است که وقتی پمپ وکیوم داغ است روغنم عوض شود یا وقتی پمپ وکیوم سرد است روغن عوض کنم؟

با خنک شدن پمپ ، رطوبت و آلودگی ها در پمپ جدا شده و پس از تخلیه ، آلودگی ها به دیواره های پمپ می چسبند. وقتی پمپ را با روغن جدید پر می کنید ، با گرم شدن پمپ ، این آلودگی ها با روغن جدید مخلوط می شوند و در نتیجه روغن جدید به سرعت آلوده می شود.

5- اگر من همیشه روی سیستم های خشک و تمیز خلا a می کشم ، آیا راهی وجود دارد که روغن من را در پمپ بررسی کنید و ببینید آیا آلوده است یا خیر و مجبور نیستید آن را مرتبا تعویض کنید؟

توصیه می شود که یک میکرون سنج مستقیماً به پمپ متصل شود و در صورت تمیز بودن روغن باید به 50 میکرون یا پایین تر برسد. اگر اندازه گیر میکرون به 50 میکرون نرسد ، این نشان دهنده آلوده شدن روغن است و باید تغییر کند.

6. غیر از بیرون آوردن هوا از سیستم ، پمپ خلا (وکیوم) من چگونه از رطوبت موجود در سیستم خلاص می شود؟

اکثر پمپ های خلا(وکیوم)  stage two دو مرحله ای در خلا به اندازه کافی کم می شوند و فشار جوی داخل سیستم را کاهش می دهند ، بنابراین اجازه می دهد رطوبت در دمای پایین تر جوشانده شود. وقتی رطوبت به صورت بخار درآید ، به راحتی توسط پمپ از بین می رود.

7. گاز بالاست وکیوم چیست و چگونه می توانم از آن استفاده کنم؟

با کشش اولیه خلا on بر روی سیستم ، بالاست گاز باز است و اجازه می دهد تا حجم اولیه هوا در سیستم روغن را دور بزند تا بلافاصله روغن آلوده نشود. هنگامی که پمپ شروع به خاموش شدن کرد ، بالاست گاز را ببندید و پمپ شروع به کاهش فشار جوی در سیستم می کند تا رطوبت و غیر قابل تغلیظ را بجوشاند.

8- شیر تخلیه وکیوم چیست؟

شیر خالی هیچ تفاوتی با شیر آب ندارد. آن را باز کنید و با روشن شدن پمپ خلا desired دلخواه خود را بدست خواهید آورد. آن را ببندید و با روشن شدن پمپ ، خلاuum وجود ندارد.

9. اگر از پمپ (وکیوم) CFM بزرگتر استفاده کنم ، آیا قادر خواهم بود که سریعتر بر روی سیستم خلا pull ایجاد کنم؟

در بیشتر موارد خیر. با استفاده از پمپ خلا در سیستم های تهویه مطبوع از 1 تن تا 10 تن ، تفاوت پمپ 3 CFM با پمپ 10 CFM را نمی بینید. به عنوان مثال ، اگر پمپ را روی سیستم قرار دهید و در عرض 2 دقیقه متوجه شوید که پمپ آرام می شود و واقعاً نمی توانید هوا را از اگزوز خارج کنید. این بدان معنی است که دیگر CFM در سیستم باقی نمانده است و شما اکنون با مولکول ها کار می کنید. بنابراین ، در این مرحله اگر پمپ 3 CFM را با پمپ 10 CFM جایگزین کنید ، تغییری در خلا و زمان ایجاد نمی شود.

10. میکرون چیست؟ 25400 میکرون در اینچ وجود دارد. بنابراین ، با سنج مرکب از 0 اینچ تا 30 اینچ ، 762000 میکرون وجود دارد.

11. من از سنج کناری پایین خود برای خلا استفاده می کنم ، آیا این اشتباه است؟

آره. سنج کناری پایین فقط فشار اتمسفر را می داند و نمی تواند رطوبت یا مواد غیر قابل تغلیظ را حس کند. گیج میکرون وسیله ای برای سنجش گرما است که نه تنها فشار اتمسفر را می خواند ، بلکه گازهای ایجاد شده توسط پمپ خلا را هنگام جوشاندن رطوبت اندازه گیری می کند. به عنوان مثال ، اگر بخواهید خلا on را روی یک بطری آب محصور بکشید ، پایین فشار سنج هنگام کشیدن خلا vac خلا perfect کاملی را می خواند. با استفاده از یک میکرون سنج ، بلافاصله با خواندن زیاد به شما اطلاع می دهد که در سیستم خود مشکلی دارید.

12. من با استفاده از یک میکرون سنج خلا system روی سیستم خود را کشیده ام و نمی توانم آن را به کمترین میزان خواندن برسانم.

به س FAالات متداول شماره 1 مراجعه کنید. احتمال دیگر این است که ممکن است مقداری روغن وارد سنج میکرون شده و در حال خواندن غلط باشد. راه حل این است که به طور مرتب الکل مالش داده شده را به قسمت اتصال میکرون بریزید ، تکان دهید و بیرون بریزید (از نوک q ، نوک پارچه یا هر ماده دیگری استفاده نکنید – فقط از الکل مایع استفاده کنید). این کار را در حدود سه بار انجام دهید ، سپس سعی کنید با اندازه گیری خلا a ایجاد کنید.

13. من می توانم بر روی سیستم خود خلا ایجاد کنم ، اما وقتی خالی می شوم ، اندازه گیری میکرون به سرعت بالا می رود. تا زمانی که از  لوله های مسی ، یا شلنگ های فلزی انعطاف پذیر استفاده نکنید ، کار جدیدی نیست

14. آیا می توانم اندازه گیری میکرون را بر روی پمپ خلا mount نصب کنم؟

انجام این کار توصیه نمی شود همانطور که می خوانید پمپ چه کاری انجام می دهد و نه آنچه پمپ برای سیستم انجام می دهد (نگاه کنید به DV-29). پیشنهاد می شود که در قسمت مکش سیستم تیغه بزنید و اندازه گیری را در آنجا نصب کنید.

15- چقدر باید خلا a سیستم را کم کنیم؟ 

توصیه می کند که یک سیستم حداقل به 250 میکرون کشیده شود و حداقل پنج دقیقه نگه داشته شود. در هر روغن پلی استر موجود در سیستم ، توصیه می شود خلا much بسیار کمتری را بکشید زیرا حذف رطوبت حتی با گرما و خلا vac بسیار دشوار است.

16- چرا میکرون سنج (گیج وکیو)به آرامی عقب می افتد و پس از کشیدن خلا و خالی شدن ، شروع به نگه داشتن می کند؟

دلیل این امر وجود تساوی در سیستم است. اگر خلا (وکیوم) را پایین بیاورید ، در دامنه کمتری عقب می افتد و نگه می دارد.

17. چرا هنگام کار پمپ باید سطح روغن را بررسی کنم؟

دلیل این امر این است که اگر قبل از خاموش شدن پمپ ها خلا the شکسته نشود ، روغن موجود در پوشش خلا will موجود در کارتریج و محفظه ورودی را جستجو می کند. سپس سطح روغن در شیشه دید پایین می آید و ظاهر سطح روغن کم است. سپس اگر پمپ دوباره به خط سطح روغن پر شود و پمپ شروع به کار کند ، روغنی که دوباره به داخل کارتریج و محفظه مکش مکیده می شود دوباره به داخل درب لگد زده می شود و اکنون شما پر می شوید و روغن از بین می رود دسته (پورت اگزوز).

https://asiapumps.ir

https://asiapumps.ir

Why do I need to check the oil level when the pump is running?

Why do I need to check the oil level when the pump is running?

Why do I need to check the oil level when the pump is running?

The reason for this is that if the vacuum is not broken before pumps are shut down the oil in the cover will seek the vacuum still in the cartridge and intake chamber. Then the oil level will drop in the sight glass and give the appearance of a low oil level. Then if the pump is refilled to the oil level line and the pump started, the oil that got sucked back into the cartridge and intake chamber will be kicked back into the cover and now you’ll be over filled and the oil will shoot out the handle (exhaust port).

How low of a vacuum should we pull on a system?

How low of a vacuum should we pull on a system?

How low of a vacuum should we pull on a system?

JB recommends that a system be pulled to at least 250 microns and held at least five minutes. On any polyester oils in a system, it is recommended to pull a much lower vacuum as moisture is very difficult to remove even with heat and vacuum.

Can I mount my micron gauge onto the vacuum pump?

Can I mount my micron gauge onto the vacuum pump?

Can I mount my micron gauge onto the vacuum pump?

It is not recommended to do so as you are reading what the pump is doing and not what the pump is doing to the system (see DV-29). It is suggested that you tee off on the suction side of the system and mount the gauge there.

I am able to pull a vacuum on my system, but when I blank-off, the micron gauge rises rapidly.

I am able to pull a vacuum on my system, but when I blank-off, the micron gauge rises rapidly.

I am able to pull a vacuum on my system, but when I blank-off, the micron gauge rises rapidly.

Unless you are using JB`s DV-29, copper tubing, or flexible metal hoses, it is not recommended to use your existing manifold and hoses for blanking-off a system to check for leaks. Hoses work very well under high pressure. Vacuum is very critical in leaks, more so than pressure. All charging hoses, including the black hoses 1/4″ or 3/8″ permeate. Where the crimp is on the brass to the hose also has possible leak issues, and the gasket at the coupler is a major leak offender. The vacuum industry uses O-rings on most couplers. When you screw down on a gasket, it goes into many contortions and will not seal. When using an O-ring, you screw down on it to get a metal to metal seat and the O-ring lies around the lip of the flare giving it a positive seal.

I have been pulling a vacuum on my system using a micron gauge and cannot get it down to a low reading.

I have been pulling a vacuum on my system using a micron gauge and cannot get it down to a low reading.

I have been pulling a vacuum on my system using a micron gauge and cannot get it down to a low reading.https

See FAQ #1. Another possibility is that some oil may have entered the micron gauge and is giving false readings. The remedy is to pour regular rubbing alcohol into the connector on the micron gauge, shake, and pour out (do not use a q-tip, rag, or any other material – use the liquid alcohol only). Do this about three times, then try to pull a vacuum with the gauge.

I have been using my low side gauge to pull a vacuum, is this wrong?

I have been using my low side gauge to pull a vacuum, is this wrong?

I have been using my low side gauge to pull a vacuum, is this wrong?

YES. The low side gauge knows only atmospheric pressure and cannot sense moisture or non-condensables. A micron gauge is a heat sensing device that not only reads atmospheric pressure, but also measures the gases created by the vacuum pump as it boils the moisture. For example, if you were to pull a vacuum on an enclosed bottle of water, the low side gauge when pulling a vacuum will read a perfect vacuum. Using a micron gauge, it will immediately tell you with a high reading the you have a problem in you system.

My vacuum pump runs, but I cannot get a vacuum.

My vacuum pump runs, but I cannot get a vacuum.

My vacuum pump runs, but I cannot get a vacuum.

The coupler between the shaft of the pump and the shaft of the motor is either broken or slipping. Make sure the set screws are tight on the flats of the two shafts.

Oil changing and dust removal – the essentials of vacuum pump care

Oil changing and dust removal – the essentials of vacuum pump care

While there are dry running vacuum pumps that do not require any oil, composites industry vacuum pumps are typically of the oil flooded rotary vane type. The reason the composites industry uses oil flooded pumps is because affordable oil-free vacuum pumps are usually limited to a maximum of about 85% vacuum. This is not enough for good quality resin infusion and pre-preg work, which usually requires pump vacuum levels of 95% and better – a level of vacuum easily achieved by an oil flooded rotary vane pump.

OK, so composites industry vacuum pumps have oil in them. Why is that a big deal?

  1. Vacuum pumps are always sucking contamination towards them. This contamination can be in the form of vapours such as organic resin solvents and water vapour extracted from the water absorbed into fabrics during manufacture and storage. (See Vacman’s Note “Vapour – the unseen enemy in composites”.)  Another form of contamination can be fine dust removed from the dry fabrics and pre-pregs, or particles of broken resin arising from the handling of vacuum lines containing cured resin. Solvent vapours passing through the pump tend to degrade the lubricating oil circulating around the pump. Water vapour entering into a vacuum pump, especially one that is cold, will condense into liquid water and this will coalesce with the pump oil. Water circulating with the pump oil will reduce the vacuum capability of the pump because water will boil readily on under vacuum on the inlet side of the pump. Pumps which are left idle with water contaminated oil will also corrode and wear more quickly when next restarted. As a further factor to be considered, there is a very fine filter inside the typical composites industry vacuum pump. This filter is called the exhaust oil mist filter or oil mist separator and it has to be fine enough to stop oil smoke being discharged from the pump. Contaminated oil will block the oil mist filter and raise the working pressure inside the pump, ultimately overloading the motor (and possibly rupturing the oil mist filter if it is very badly contaminated).
  2. Vacuum pumps for composites industry use are cooled by the air flow from the motor fan.  They will typically run with a pump oil temperature in the 90 0C to 110 0C (194 0F to 230 0F) range.  The pumps are designed to run at this temperature to minimise the affect of water vapour condensing in the pump oil.  (See point 1.)  While this temperature range will improve water vapour removal, higher temperatures will shorten oil and motor bearing life.  With clean external surfaces and in a moderate ambient temperature range of, say, 15 0C to 40 0C (59 0F to 104 0F), the oil temperature will sit within the desired range due to heat dissipation from the pump and motor surfaces.  However, if heat radiation from the pump and motor is reduced because of dust build-up on the pump and motor fins the pump and motor temperature will rise and both pump and motor life will be shortened.

Moral of the story – change the oil often and keep the pump clean externally

For optimum pump life, the 2 biggest favours you can do for your vacuum pump are to change the pump oil whenever it is contaminated and to keep the pump and motor surfaces clean.  Since vacuum pump oils are generally moderate cost and readily available compressor oils, oil changing should not be expensive, nor should it take much time.  As long as compressed air is available, cleaning the pump and motor will take very little time.

Oil change interval

While changing the oil at 500 hours is the normal recommendation, this interval should be the maximum time interval, not a hard and fast rule.  This is because oil contamination is highly variable, depending on individual process conditions.  In some cases, such as when a vacuum pump is used to bag down wood based fibre boards for mould making, it can be advisable to change the oil after each use because of the extremely high water vapour loading.  The most practical way to assess oil condition is to inspect the oil visible in the oil sight glass after the pump has been stopped for a few minutes.  If it is clear and “oily” in appearance (usually a pale gold colour) it will be fine.  If an opaque dirty black or brown, it will be loaded with dust or carbonised oil.  If the colour is opaque milky white/murky pale brown, it will be contaminated with water vapour.  If the latter and if the oil has been changed recently, you may be able to clean up the oil by leaving the pump run at full vacuum overnight.  If back to a clear gold colour in the morning, the oil will be fine.  If still murky, change it.

Note that using synthetic oil to extend the oil change interval is not recommended.  While synthetic oils can be beneficial in compressors and gearboxes, these applications do not suck in contamination to anywhere near the extent a composites industry vacuum pump does.  In our view, with vacuum pumps it is better to use a moderate cost all and change it frequently to avoid the build-up of contaminants.

Oil drain procedurevacmans-notes-a6-img1https://asiapumps.ir

  1. Make sure the pump is at operating temperature before changing the oil, ideally after running for at least 30 minutes, although 60 minutes is better.  The reason for getting the pump hot is to lower the oil viscosity as much as possible for maximum drainage.
  2. Switch off the pump and undo the oil drain plug.  If tight to undo, do not apply a long lever arm to the wrench.  Instead, give the wrench a sharp tap with a soft headed hammer.  The reason for a avoiding a long lever arm is because excessive torque may lift one end of the pump and break the rubber vibration isolators under the pump.  Bear in mind that the oil being drained will be hot – keep fingers clear of the hot oil!
  3. If the pump is on a mobile machine, such as a Vacmobile, lock the castors on the oil drain side of the machine and lift the other side of the machine for better oil drainage.
  4. While tilting the pump will improve drainage, some oil will remain in the pumping chamber.  If the oil is badly contaminated, the oil in the pumping chamber should also be removed.  To remove this remaining oil, replace the oil drain plug and tighten it hand tight.  Also make sure the oil fill plug is in place and hand tight. Briefly start and stop the pump – a second of running time will be long enough.  Once the pump has stopped, remove the drain plug again and drain the remainder of the oil.  Do NOT run the pump with either the oil drain plug or the filler cap removed – as that is likely to make a big mess!
  5. After draining the oil, refit and tighten the oil drain plug.

Oil filling procedure

  1. Check that the oil drain plug is in place and tight.
  2. Select the correct grade of oil for the particular pump model being serviced.
  3. Add oil slowly, with the pump in a level position.  For pumps fitted with a single round oil sight glass, the ideal level is between ½ way up the sight glass and the ¾ level.  With pumps with 2 sight glasses one above the other, a level about ½ way up the top one will be fine.  In either case, do not overfill.
  4. Refit the oil filler plug and tighten.
  5. Switch on the pump and check that the oil level remains below the top of the sight glass.

The reason it is important not to over fill the pump is because there is a possibility of liquid oil being blown up into the oil mist filter under high air flow conditions, e.g., when beginning to pump down.  If liquid oil is blown up into the oil mist filter, there is a risk that the filter will become saturated with liquid oil which the fine filter is not designed to handle.  If over-saturated with oil, the pressure inside the pump will increase excessively and there is a risk the element will rupture and need to be replaced.

Avoiding over-filling with oil is critical.  Always make sure that there is an air bubble of about ¼ of the oil sight glass diameter visible above the oil.

Cleaning dust from the external surfaces of the motor and pumpvacmans-notes-a6-img2https://asiapumps.ir

It will usually be most convenient if dust is removed from the motor and pump while the pump is running prior to an oil change.  Using a compressed air gun, blow dust from all accessible surfaces, but do not blow debris into the exhaust port of the pump.  One of the important areas to focus on is the fan end of the motor, as this is where dust and fibres tend to accumulate.  Dust will also tend to adhere to the blades of the motor fan, significantly reducing its efficiency.  Without poking the air nozzle into the moving fan blades, give the motor fan end a very thorough blow down.

Exhaust oil mist filter replacement

Replace the exhaust oil mist separator and clean or replace the gas ballast filter as soon as one of the following occurs:

  • New oil discolours quickly after changing.
  • Oil smoke is discharged from the exhaust port.  But don’t confuse oil smoke with water vapour being extracted from a wet material.  If any possibility of a high water vapour load, recheck for smoke after the pump has run at full vacuum overnight with the inlet valve closed.vacmans-notes-a6-img3-modified
  • Motor overload trips on starting or during the course of a job – but first check power supply voltage is correct and the power cord is in good condition.
  • After 1 year of daily use, or after 2 years of moderate use
  • After testing with a back-pressure gauge in accordance with the pump maker’s instructions. This is the surest method of testing, but it does require a pressure gauge and an understanding of the procedure.

Exhaust oil mist filter replacement is usually simple and will typically involve exposing the filter element as shown in the photo.

تعویض روغن و حذف گرد و غبار – موارد ضروری مراقبت و نگهدار از پمپ خلاء وکیوم

تعویض روغن و حذف گرد و غبار – موارد ضروری مراقبت و نگهدار از پمپ خلاء وکیوم

تعویض روغن و حذف گرد و غبار – موارد ضروری مراقبت از پمپ خلاء وکیوم

تعویض روغن و حذف گرد و غبار ICON در حالی که پمپ های خلا running خشک کار می کنند که به هیچ روغن احتیاج ندارند ، پمپ های خلا vac صنعت کامپوزیت ها معمولاً از نوع پره های دوار روغنی است که در آن روغن غرق می شود. دلیل اینکه صنعت کامپوزیت از پمپ های غرقاب در روغن استفاده می کند این است که پمپ های خلا vac بدون روغن با قیمت مناسب معمولاً حداکثر در حدود 85٪ خلا vac محدود می شوند. این برای تزریق رزین با کیفیت خوب و کار قبل از آماده سازی کافی نیست ، که معمولاً به سطح خلا pump پمپ 95٪ و بهتر نیاز دارد – یک سطح خلا easily که به راحتی توسط پمپ پره چرخشی پر از روغن حاصل می شود. خوب ، بنابراین پمپ های خلاuum صنعت کامپوزیت ها روغن دارند. چرا این یک معامله بزرگ است؟ پمپ های خلاac همیشه آلودگی را به سمت خود می مکند. این آلودگی می تواند به صورت بخارهایی مانند حلالهای آلی رزین و بخار آب استخراج شده از آب جذب شده در پارچه ها در هنگام ساخت و ذخیره سازی باشد. (به Vacman’s Note “بخار – دشمن غیب در کامپوزیت ها” مراجعه کنید.) شکل دیگری از آلودگی می تواند ریزگردهای ریز شده از پارچه های خشک و پیش ساخته ها یا ذرات رزین شکسته حاصل از کار با خطوط خلاuum حاوی رزین پخته شده باشد. بخارات حلال عبوری از پمپ تمایل به تخریب روغن روانکاری در اطراف پمپ دارند. بخار آب که وارد پمپ خلا vac می شود ، به خصوص آن که سرد باشد ، در آب مایع متراکم می شود و این با روغن پمپ بهم می پیوندد. گردش آب با روغن پمپ قابلیت خلا پمپ را کاهش می دهد زیرا آب در خلا vac سمت ورودی پمپ به راحتی می جوشد. پمپ هایی که با روغن آلوده به آب بیکار مانده اند نیز در هنگام راه اندازی مجدد دچار خوردگی شده و با سرعت بیشتری فرسوده می شوند. به عنوان یک عامل دیگر که باید در نظر گرفته شود ، یک فیلتر بسیار ظریف در داخل پمپ خلاuum صنعت کامپوزیت های معمولی وجود دارد. به این فیلتر فیلتر مه غلیظ روغن اگزوز یا جدا کننده غبار روغن گفته می شود و باید به اندازه کافی خوب باشد تا دود روغن از پمپ متوقف شود. روغن آلوده فیلتر مه غلیظ روغن را مسدود کرده و فشار کار داخل پمپ را بالا می برد و در نهایت موتور را بیش از حد بار می کند (و در صورت آلودگی بسیار زیاد فیلتر مه غلیظ ممکن است پاره شود). پمپ های خلاuum برای استفاده در صنایع کامپوزیت با جریان هوا از فن موتور خنک می شوند. آنها معمولاً با دمای روغن پمپ در محدوده 90 0C تا 110 0C (194 0F تا 230 0F) کار خواهند کرد. پمپ ها به گونه ای طراحی شده اند که در این دما کار می کنند تا تأثیر متراکم شدن بخار آب در روغن پمپ را به حداقل برسانند. (به قسمت 1 مراجعه کنید.) در حالی که این محدوده دما باعث حذف بخار آب می شود ، دمای بالاتر باعث کاهش عمر روغن و تحمل موتور می شود. با سطوح خارجی تمیز و در یک محدوده دمای محیط متوسط ​​مثلاً 15 0 تا 40 0C (59 0F تا 104 0F) ، به دلیل اتلاف گرما از پمپ و سطح موتور ، دمای روغن در محدوده مورد نظر قرار می گیرد. با این حال ، اگر تابش گرما از پمپ و موتور به دلیل جمع شدن گرد و غبار روی پمپ و باله های موتور کاهش یابد ، دمای پمپ و موتور افزایش می یابد و عمر پمپ و موتور کاهش می یابد. اخلاق داستان – اغلب روغن را عوض کنید و پمپ را از بیرون تمیز نگه دارید برای ماندگاری مطلوب پمپ ، 2 بزرگترین مزیتی که می توانید برای پمپ وکیوم خود داشته باشید این است که روغن پمپ را هر زمان آلوده باشد عوض کنید و سطح پمپ و موتور را تمیز نگه دارید. از آنجا که روغن های پمپ خلا pump معمولاً با هزینه متوسط ​​و روغن های کمپرسور قابل دسترسی هستند ، تعویض روغن نباید گران باشد و همچنین نباید زمان زیادی را صرف کرد. تا زمانی که هوای فشرده موجود باشد ، تمیز کردن پمپ و موتور زمان بسیار کمی را می گیرد. فاصله تعویض روغن در حالی که تعویض روغن در 500 ساعت توصیه طبیعی است ، این فاصله باید حداکثر فاصله زمانی باشد ، نه یک قانون سخت و سریع. دلیل آن این است که آلودگی روغن بسته به شرایط فرآیند فردی بسیار متغیر است. در برخی موارد ، مانند زمانی که از پمپ خلا برای بسته بندی تخته های الیافی بر پایه چوب برای ساخت قالب استفاده می شود ، می توان توصیه کرد که پس از هر بار استفاده ، روغن تعویض شود ، زیرا بخار آب بسیار زیاد است. عملی ترین راه برای ارزیابی وضعیت روغن ، بررسی روغن قابل رویت در شیشه دید روغن پس از چند دقیقه توقف پمپ است. اگر از نظر ظاهری شفاف و “روغنی” باشد (معمولاً رنگ آن طلای کم رنگ است) خوب است. اگر یک مات یا سیاه یا مایل به قهوه ای مات باشد ، با گرد و غبار یا روغن گازدار پر می شود. اگر رنگ آن مات سفید شیری / مبهم و قهوه ای کم رنگ باشد ، به بخار آب آلوده می شود. اگر مورد اخیر وجود داشته باشد و اگر روغن اخیراً تعویض شده باشد ، ممکن است بتوانید با ترک پمپ در یک شب در خلا full ، روغن را تمیز کنید. اگر صبح به یک رنگ طلای روشن برگردید ، روغن خوب خواهد شد. اگر هنوز کدر است ، آن را تغییر دهید. توجه داشته باشید که استفاده از روغن مصنوعی برای افزایش فاصله تعویض روغن توصیه نمی شود. در حالی که روغن های مصنوعی می توانند در کمپرسورها و جعبه دنده ها مفید باشند ، اما این برنامه ها در جایی که پمپ خلا industry صنعت کامپوزیت ها عمل می کند ، آلودگی را نمی کشند. از نظر ما

Vacuum Ranges & Appropriate Pump Technologies

Vacuum Ranges & Appropriate Pump Technologies

Vacuum Ranges & Appropriate Pump Technologies

Pumps for High and Ultra-High Vacuumhttps://asiapumps.ir

How to select lab vacuum pumps

How to select lab vacuum pumps

How to select lab vacuum pumps

When selecting a vacuum pump for lyophilization, evaporation or concentration
applications, a vital consideration in pump performance is vapor tolerance. These
applications tend to involve high vapor flows that make extra demands of the
pumping capacity, so a pump that is designed to handle those vapors is important
to your success. But what do we mean by “handle those vapors?”
First things first. The first criterion in selecting a pump is to make sure that you have
one that produces vacuum in the most effective range for your application.
Vacuum Range
Most evaporative applications in the lab are best served by diaphragm pumps.
These can be made of chemical resistant materials and produce enough vacuum
to evaporate nearly every lab solvent (except DMSO) at room temperature. With the
addition of modest heat, even DMSO is manageable.
In contrast, lyophilization (freeze drying) requires vacuum that is deep enough to
induce sublimation – movement of a solvent directly from the solid state (e.g., ice) to
the vapor state. Effectively, since evaporative use of vacuum is directed at lowering
the boiling point, for sublimation we are trying to achieve a boiling point that is below
the freezing point (eutectic temperature). This takes much deeper vacuum than
diaphragm pumps can reach. For these applications, rotary vane pumps are the
most common choice

اثرات منفی فیلتراسیون خط مکش بر پمپ وکیوم

اثرات منفی فیلتراسیون خط مکش بر پمپ وکیوم

اثرات منفی فیلتراسیون خط مکش

برندان کیسی عملکرد فیلترها در سیستم هیدرولیک حفظ پاکیزگی مایعات است. با توجه به اینکه هدف از حفظ پاکیزگی مایعات ، بدست آوردن حداکثر عمر مفید از اجزای سیستم است ، ضروری است که درک کنیم برخی از مکانهای فیلتر می توانند نتیجه عکس داشته باشند ، خط مکش از جمله آنهاست. از نظر فیلتراسیون ، ورودی پمپ مکانی ایده آل برای فیلتر کردن محیط است. عدم وجود هم چنین سرعت سیال زیاد ، که ذرات به دام افتاده را مختل می کند و هم افت فشار زیاد روی عنصر ، که باعث کوچ ذرات از طریق محیط می شود ، باعث افزایش کارایی فیلتر می شود. با این حال ، این محدودیت ها ممکن است با محدودیت جریانی که این عنصر در خط ورودی ایجاد می کند و اثر منفی آن بر عمر پمپ ، غلبه کنند. فیلترهای ورودی یا مکش پمپ معمولاً به صورت صافی 150 میکرونی (100 مش) در می آیند که به داخل نفوذ ورودی پمپ در داخل مخزن پیچ می شود. محدودیت ناشی از صافی مکش ، که در دمای پایین سیال (گرانروی زیاد) و با مسدود شدن عنصر افزایش می یابد ، احتمال ایجاد خلا جزئی در ورودی پمپ را افزایش می دهد. خلا Ex زیاد در ورودی پمپ ممکن است باعث فرسایش کاویتاسیون و آسیب مکانیکی شود. فرسایش کاویتاسیون هنگامی که خلاial جزئی در خط مصرف پمپ ایجاد می شود ، کاهش فشار مطلق می تواند منجر به تشکیل حباب های گاز و / یا بخار درون مایع شود. هنگامی که این حباب ها در معرض فشارهای بالا در خروجی پمپ قرار می گیرند ، به شدت منفجر می شوند. فشارهای فروپاشی بیشتر از 145000 PSI ثبت شده است و در صورت بروز میکرودیزلینگ (احتراق مخلوط هوا / روغن) دمایی تا 2.012 درجه فارنهایت ممکن است. وقتی حباب ها در نزدیکی سطح فلز فرو می ریزند ، فرسایش رخ می دهد (شکل 1). شکل 1. آسیب فرسایش کاویتاسیون به صفحه سوپاپ سخت شده مورد فرسایش حفره ای به سطح اجزای مهم آسیب می رساند و مایع هیدرولیک را با ذرات سایش آلوده می کند. کاویتاسیون مزمن می تواند باعث فرسایش قابل توجه شود و منجر به خرابی پمپ شود. آسیب مکانیکی هنگامی که خلاial جزئی در ورودی پمپ ایجاد می شود ، نیروهای مکانیکی ناشی از خلا itself خود می توانند باعث خرابی فاجعه بار شوند. ایجاد خلاuum در محفظه های پمپاژ یک پمپ محوری سوکت توپ پیستون و پد دمپایی را در کشش قرار می دهد. این اتصال برای مقاومت در برابر نیروی کششی بیش از حد طراحی نشده است و در نتیجه ، دمپایی از پیستون جدا می شود (شکل 2). شکل 2. دمپایی از پیستون خود جدا شده است نتیجه خلاuum بیش از حد در ورودی پمپ اگر نیروی کششی ناشی از خلا enough به اندازه کافی زیاد باشد ، یا در طی ساعتهای طولانی کار با اتصال مفصل توپی در زمان ورود ، کشش به صورت فوری اتفاق می افتد. صفحه نگهدارنده پیستون ، که وظیفه اصلی آن حفظ تماس دمپایی پیستون با صفحه swash است ، باید در مقابل نیروهایی که برای جدا کردن پیستون از دمپایی آن عمل می کنند ، مقاومت کند. این بار ناشی از خلا wear باعث تسریع در سایش بین دمپایی و صفحه نگهدارنده می شود و می تواند باعث پیچ خوردگی صفحه نگهدارنده شود. این اجازه می دهد تا دمپایی در هنگام ورودی تماس با صفحه swash را از دست بدهد ، و هنگامی که مایع تحت فشار در هنگام خروج روی انتهای پیستون عمل می کند ، آن را دوباره بر روی صفحه swash قرار می دهیم. این ضربه به دمپایی های پیستونی و صفحه سواش آسیب می رساند ، و به سرعت منجر به خرابی فاجعه بار می شود. در طرح های پمپ محور خمیده ، پیستون بهتر توانایی مقاومت در برابر نیروهای کششی ناشی از خلا را دارد. ساختار پیستون به طور کلی ناهموارتر است و توپ پیستون را معمولاً توسط یک صفحه نگهدارنده پیچ دار در سوکت شافت خود نگه می دارد. با این حال ، شکست کششی ساقه پیستون و / یا کمانش صفحه نگهدارنده هنوز هم می تواند در شرایط خلاuum زیاد رخ دهد. در طراحی پمپ پره ، پره ها باید از موقعیت جمع شده در روتور در هنگام ورودی امتداد داشته باشند. وقتی این اتفاق می افتد ، مایعات ورودی پمپ جای خالی روتور ایجاد شده توسط پره در حال گسترش را پر می کند. اگر خلا excessive بیش از حد در ورودی پمپ وجود داشته باشد – در پایه پره عمل می کند. این امر باعث می شود که پره ها در حین ورودی با حلقه بادامک تماس خود را از دست ندهند و پس از آنکه مایع تحت فشار در هنگام خروج بر روی پایه پره کار می کند ، آنها را دوباره بر روی حلقه بادامک قرار می دهند. این ضربه به نوک پره ها و حلقه بادامک آسیب می زند و به سرعت منجر به خرابی فاجعه بار می شود. پمپ های دنده از نظر مکانیکی کمترین حساس به نیروهای ناشی از خلاuum هستند. با وجود این واقعیت ، تحقیقات نشان داده است که گرفتگی صافی مکش ناشی از محصولات جانبی اکسیداسیون روغن صمغی می تواند عمر مفید پمپ دنده خارجی را حداقل 50 درصد کاهش دهد. با توجه به احتمال صافی مکش برای آسیب رساندن به پمپ ، چرا اصلاً از آنها استفاده می شود؟ این س whenال کنجکاوتر می شود که در نظر بگیرید اگر مخزن و مایعات موجود در آن تمیز شود و کلیه هوا و مایعات ورودی به مخزن به اندازه کافی فیلتر شود ، مایعات موجود در مخزن حاوی ذرات سختی نیست که به اندازه کافی درشت شوند. صافی مشبک واضح است که بررسی استدلال های i

The Negative Effects of pump Suction Line Filtration

The Negative Effects of pump Suction Line Filtration

The Negative Effects of Suction Line Filtration

The function of filters in a hydraulic system is to maintain fluid cleanliness. Given that the objective of maintaining fluid cleanliness is to gain maximum service life from the system components, it is imperative to understand that some filter locations can have the opposite effect, the suction line is among them.

From a filtration perspective, the pump intake is an ideal location for filtering media. The absence of both high fluid velocity, which disturbs trapped particles, and high pressure-drop across the element, which forces migration of particles through the media, increases filter efficiency. However, these advantages may be outweighed by the flow restriction the element creates in the intake line and the negative effect this has on pump life.

Pump inlet or suction filters usually take the form of a 150-micron (100-mesh) strainer, which is screwed onto the pump intake penetration inside the reservoir. The restriction caused by a suction strainer, which increases at low fluid temperatures (high viscosity) and as the element clogs, increases the chances of a partial vacuum developing at the pump inlet. Excessive vacuum at the pump inlet may cause cavitation erosion and mechanical damage.

Cavitation Erosion

When a partial vacuum develops in the pump intake line, the decrease in absolute pressure can result in the formation of gas and/or vapor bubbles within the fluid. When these bubbles are exposed to elevated pressures at the pump outlet, they implode violently. Collapse pressures greater than 145,000 PSI have been recorded and if microdieseling occurs (combustion of air/oil mixture) temperatures as high as 2,012ºF are possible. When bubbles collapse in close proximity to a metal surface, erosion occurs (Figure 1).

https://asiapumps.ir
Figure 1. Cavitation Erosion Damage to
Case-hardened Valve Plate

Cavitation erosion damages critical component surfaces and contaminates the hydraulic fluid with wear particles. Chronic cavitation can cause significant erosion and lead to pump failure.

Mechanical Damage

When a partial vacuum develops at the pump inlet, the mechanical forces induced by the vacuum itself can cause catastrophic failure. The creation of a vacuum in the pumping chambers of an axial pump puts the piston-ball and slipper-pad socket in tension. This joint is not designed to withstand excessive tensile force and as a consequence, the slipper becomes detached from the piston (Figure 2).

https://asiapumps.ir
Figure 2. Slipper Separated from its Piston as
a Result of Excessive Vacuum at the Pump Inlet

This can occur either instantaneously, if the vacuum-induced tensile force is great enough, or over many hours of service as the ball joint is repetitively put in tension during inlet.

The piston retaining plate, the primary function of which is to keep the piston slippers in contact with the swash plate, must resist the forces that act to separate the piston from its slipper. This vacuum-induced load accelerates wear between the slipper and retaining plate and can cause the retaining plate to buckle. This allows the slipper to lose contact with the swash plate during inlet, and it is then hammered back onto the swash plate when pressurized fluid acts on the end of the piston during outlet. The impact damages the piston slippers and swash plate, leading rapidly to catastrophic failure.

In bent axis pump designs, the piston is better able to withstand vacuum-induced tensile forces. Piston construction is generally more rugged and the piston ball is usually held in its shaft socket by a bolted retaining plate. However, tensile failure of the piston stem and/or buckling of the retaining plate can still occur under high vacuum conditions.

In vane pump designs, the vanes must extend from their retracted position in the rotor during inlet. As this happens, fluid from the pump inlet fills the void in the rotor created by the extending vane. If excessive vacuum exists at the pump inlet – it will act at the base of the vane. This causes the vanes to lose contact with the cam ring during inlet, and they are then hammered back onto the cam ring as pressurized fluid acts on the base of the vane during outlet. The impact damages the vane tips and cam ring, leading rapidly to catastrophic failure.

Gear pumps are mechanically the least susceptible to vacuum-induced forces. Despite this fact, research has shown that suction strainer clogging caused by resinous, oil oxidation by-products can reduce the service life of an external gear pump by at least 50 percent.

Given the potential for suction strainers to damage the pump, why use them at all? This question becomes more curious when you consider that if the reservoir and the fluid it contains starts out clean and all air and fluid entering the reservoir is adequately filtered, the fluid in the reservoir will not contain hard particles large enough to be captured by a coarse mesh strainer. Clearly, examination of the arguments for installing suction strainers is required.

Trash Exclusion

The argument that suction strainers should be fitted to protect the pump from debris that enters the reservoir as a result of careless maintenance practices, is a popular one. Nuts, bolts, tools and similar debris pose minimal threat to the pump in a properly designed reservoir, where the pump intake is located a minimum of four inches off the bottom. When anecdotal evidence is presented that debris, which entered the tank through careless maintenance, did cause a pump failure, its weight is diminished on the basis that if a suction strainer had been fitted, the same neglect of its maintenance would have eventually resulted in the same outcome – premature pump failure. Notwithstanding the above, the preferred solution to this problem is to take action to prevent contaminants from entering the reservoir in the first place.

Warranty

Another popular misconception surrounding suction strainers is that their absence voids the pump manufacturers’ warranty. If a nut or bolt enters the pump through its intake causing it to fail, it is reasonable to expect that the manufacturer will deny warranty. It is also reasonable to expect the manufacturer to deny warranty if a pump failure is caused by particles smaller than the mesh of a strainer or by cavitation as a result of a clogged strainer. So if a pump fails through either contamination or cavitation, the manufacturer is unlikely to accept warranty – suction strainer or no suction strainer.

Where suction filters are fitted, the case for removing and discarding them is compelling. In most applications, the contamination control benefits these filters offer are strongly outweighed by the negative impact they can have on pump service life. In applications that demand their installation or where human barriers prevent their removal, precautions must be taken to prevent component damage.

If suction filtration is installed, a filter located outside the reservoir is preferable to a suction strainer. The inconvenience of servicing a filter located inside the reservoir is a common reason why suction strainers go unserviced – until the pump fails. If a suction strainer is used, opt for 60-mesh (240-microns) rather than the more common 100-mesh (150-microns). The strainer should be grossly oversized for the pump’s flow rate to ensure that pressure drop is minimized, even under the most adverse conditions. Regardless of the type of filter employed, it must incorporate a bypass valve to prevent the element from creating a pressure drop that exceeds the safe vacuum limit of the pump. A gauge or transducer should also be installed downstream of the filter to enable continuous monitoring of absolute pressure at the pump inlet.

ایجاد خلا (وکیوم) خیلی بالا

ایجاد خلا (وکیوم) خیلی بالا

ایجاد خلا (وکیوم) خیلی بالا

تمیز توربو پمپ ها برای تولید خلا clean تمیز در محدوده 10-3 تا 10-10 hPa مناسب هستند. به لطف نسبت فشرده سازی بالا ، آنها با اطمینان روغن را از ناحیه ورودی پمپ های روغن دار و دور از گیرنده نگه می دارند. مدل هایی با محفظه های استیل ضد زنگ و فلنج CF قابل پخت هستند. این امر باعث می شود که این پمپ ها برای کاربردهای تحقیق و توسعه در مواردی که نیاز به خلأ بسیار زیاد است ، مناسب باشند. از توربوپمپ ها می توان برای تخلیه شناورهای بزرگ با پمپ های چرخشی پره ای به عنوان پمپ های پشتی استفاده کرد. در مورد پمپ های توربو ، پمپ های دیافراگم دو مرحله ای به عنوان پمپ های پشتی کافی هستند. اما به دلیل سرعت پایین پمپاژ ، زمان زیادی برای پمپاژ کشتی های بزرگتر طول می کشد. جریان گاز این ترکیب پمپ نیز توسط پمپ دیافراگم بسیار محدود می شود. با این حال این ترکیب یک راه حل بسیار مقرون به صرفه برای یک ایستگاه پمپاژ خشک است. این ماده اغلب برای طیف سنج های جرمی پمپ شده متفاوت و سایر کاربردهای تحلیلی یا تحقیق و توسعه استفاده می شود. اگر در منطقه پمپ پشتی به سرعت پمپاژ بالاتری نیاز است ، توصیه می کنیم از پمپ های ریشه ای چند مرحله ای از سری ACP یا برای فرآیندهای خلا chemical شیمیایی در صنعت نیمه هادی یا خورشیدی ، پمپ های پشتیبان با فرایند استفاده کنید. ایستگاه های پمپاژ متشکل از پمپ پشتی و توربوپمپ نیازی به شیر ندارند. هر دو پمپ همزمان روشن می شوند. به محض رسیدن پمپ پشتی به خلا fore پیشین لازم ، توربو پمپ به سرعت به سرعت اسمی خود می رسد و سریعاً ظرف را از فشار [Math Processing Error] <10-4 hPa با سرعت پمپاژ بالا تخلیه می کند. خرابی های مختصر برق را می توان با سرعت چرخش زیاد روتور از بین برد. در صورت قطع برق طولانی تر ، در صورت کاهش RPM ها به زیر حداقل سرعت ، می توان پمپ و گیرنده را به طور خودکار تخلیه کرد. تأثیراتی که در تخلیه شناورها نقش دارند در فصل 2 شرح داده شده است. مسائل مربوط به ابعاد و همچنین محاسبه زمان تخلیه پمپ نیز در آن فصل شرح داده شده است. تخلیه محفظه های قفل بار تخلیه محفظه های قفل بار قطعاً هنگام انتقال قطعه های کاری که باید در یک فرآیند خلا treated تصفیه شوند ، به دست زدن تمیز نیاز دارد. اگر این موارد از فشار اتمسفر منتقل شوند ، ابتدا باید محفظه را از طریق یک خط بای پس تخلیه کنید. توربو پمپ در حال اجرا از طریق شیرآلات بین پمپ پشتی و محفظه متصل می شود. برنامه های تحلیلی امروزه در بسیاری از موارد از طیف سنج های جرمی در دستگاه های آنالیز استفاده می شود. مایعات اغلب در محفظه ورودی سیستم خلاuum تزریق و تبخیر می شوند. فشار در چند مرحله کاهش می یابد و اتاق های جداگانه توسط روزنه ها از یکدیگر جدا می شوند. از آنجا که هر محفظه باید پمپ شود ، هدف این است که جریان گاز از طریق شیرهای روی توربو پمپ از طریق ترکیبی ماهرانه از پمپ های پشتی و توربو پمپ ترکیب شود. توربو پمپ های اصلاح شده خاص با شیر برای برنامه های سری استفاده می شود. علاوه بر SplitFlow 50 که در فصل 4.9.3 شرح داده شده ، راه حل های ویژه مشتری نیز می تواند ارائه شود. آشکارسازهای نشت هلیوم نیز مجهز به توربوپمپ هستند. در این حالت ، اغلب از اصل جریان متقابل استفاده می شود (به بخش 7.2.1 مراجعه کنید). من. ه یک طیف سنج جرمی در سمت خلأ زیاد پمپ قرار دارد. با توجه به نسبت فشرده سازی کمتر توربوپمپ ها برای هلیم نسبت به نیتروژن یا اکسیژن ، پمپ به عنوان یک فیلتر انتخابی برای هلیوم عمل می کند. پمپ های دارای بار گاز زیاد در فرایندهای خلا vac توربوپمپ هنگام پمپاژ بارهای زیاد گاز برای فرآیندهای خلا دو مزیت دارد: در ابتدای هر مرحله فرآیند خلا clean تمیز ایجاد می کند و پس از آن می تواند گاز فرآیند را بدون هیچگونه برگشت مضر پمپاژ کند. در مرحله دوم ، هدف اصلی حفظ فشار خاصی است که در آن فرآیند خلا desired مورد نظر باید اجرا شود. در این فرایند ، توان تولید گاز و فشار کاری توسط برنامه مورد نظر تعیین می شود. من. ه یک مقدار جریان مشخص داده شده با یک جریان گاز معین پمپ می شود. علاوه بر این ، دستیابی سریع به خلا clean میانی تمیز هنگام تعویض قطعه های کار باید امکان پذیر باشد. از آنجا که این الزامات متناقض است ، باید یک توربو پمپ با اندازه کافی برای توان گاز مورد نیاز و خلا inter میانی مورد نیاز انتخاب شود. فشار فرآیند از طریق دریچه ورودی (مانند شیر پروانه ای) تنظیم می شود. نمونه ای از نحوه اندازه گیری این نوع ایستگاه پمپاژ در فصل 2 نشان داده شده است. حداکثر بارهای مجاز گاز مشخص شده در داده های فنی باید به معنای بارهای مداوم مجاز باشد. این امر به شرط اطمینان از خنک سازی کافی مطابق با مشخصات و فشار پشتیبان متناسب با زیر حداکثر فشار پشتیبان بحرانی اعمال می شود. پمپاژ مواد خورنده و ساینده هنگام پمپاژ گازهای خورنده ، باید تدابیر لازم برای محافظت از موتور / مناطق تحمل و روتور به ویژه در برابر خوردگی گرفته شود. برای انجام این کار ، تمام سطوحی که با گاز خورنده تماس پیدا می کنند یا با روکش تهیه می شوند یا از fr ساخته می شوند

13 عامل مشترکی که بر عمر پمپ وکیوم تأثیر می گذارد

13 عامل مشترکی که بر عمر پمپ وکیوم تأثیر می گذارد

13 عامل مشترکی که بر عمر پمپ تأثیر می گذارد

بیش از 45 سال پمپ به مدت طولانی طراحی شده است و کاربر پمپ را به گونه ای کار کرده و نگهداری می کند که منجر به نیم قرن کار بدون مشکل شود. در معادله کلی طول عمر قابل اعتماد پمپ ، تقریباً هر عاملی به کاربر نهایی – بخصوص نحوه عملکرد و نگهداری پمپ – بستگی دارد. به عنوان نمونه ، می توان انتظار داشت که یک پمپ استاندارد L-frame American National Standards Institute (ANSI) برای 15 تا 20 سال کار کند – و در بسیاری از موارد بیشتر از 25 سال – اگر به درستی نگهداری شود و در نزدیکی بهترین عملکرد / طراحی کار کند نقطه. می توان انتظار داشت که یک پمپ پخش کننده چند مرحله ای با قدرت بالا در سرویس تغذیه دیگ بخار 40 سال خدمات یا بیشتر ارائه دهد. برای طراحی خاص پمپ ، برخی از عواملی که کاربران نهایی می توانند برای طولانی شدن عمر پمپ کنترل کنند ، چیست؟ اگرچه این یک لیست جامع نیست ، اما 13 فاکتور قابل توجه زیر موارد مهمی برای افزایش عمر پمپ هستند. 1. نیروی شعاعی آمار صنعت نشان می دهد که بزرگترین دلیل خروج پمپ های سانتریفیوژ از کار ، خرابی یاتاقان ها و / یا مهر و موم های مکانیکی است. یاتاقان ها و مهر و موم ها “قناری های موجود در معدن ذغال سنگ” هستند – اینها شاخص های اولیه سلامت پمپ و منادی آنچه در سیستم پمپاژ اتفاق می افتد هستند. هرکسی که مدت زیادی در این صنعت بوده است احتمالاً می داند که بهترین روش شماره 1 استفاده از پمپ در نزدیکترین نقطه کارایی (BEP) یا نزدیک آن است. در BEP ، پمپ با طراحی کمترین میزان نیروی شعاعی را تجربه خواهد کرد. بردارهای نیروی حاصل از تمام نیروهای شعاعی آغاز شده از کار دور از BEP در زاویه 90 درجه روتور آشکار شده و سعی در انحراف و خمش شافت دارند. نیروی شعاعی بالا و انحراف شافت متعاقب آن کشنده مهر و موم های مکانیکی و عامل موثر در کاهش عمر تحمل است. اگر به اندازه کافی بالا باشد ، نیروی شعاعی می تواند باعث انحراف یا خم شدن شافت شود. اگر پمپ را متوقف کنید و میزان رانش در شافت را اندازه بگیرید ، به نظر نمی رسد مشکلی وجود داشته باشد زیرا این یک وضعیت پویا است ، نه یک حالت ایستا. شافت خم شده (انحراف) با سرعت 3600 دور در دقیقه (دور در دقیقه) دو بار در هر دور منحرف می شود ، بنابراین در واقع 7200 بار در دقیقه خم می شود. این انحراف با چرخه بالا باعث می شود سطح درزگیرها در تماس نباشند و لایه مایع مورد نیاز برای عملکرد صحیح آب بندی را حفظ کند. 2. آلودگی روغن برای بلبرینگ ، بیش از 85 درصد خرابی های بلبرینگ ناشی از نفوذ آلودگی است ، یا به عنوان خاک و مواد خارجی یا به عنوان آب. فقط 250 قسمت در میلیون (ppm) آب ، عمر تحمل را با ضریب چهار کاهش می دهد. عمر مفید روغن حیاتی است. کارکرد پمپ می تواند شبیه کارکرد مداوم ماشین با سرعت 60 مایل در ساعت باشد. با 24 ساعت شبانه روز ، هفت روز در هفته ، طول نمی کشد که مایل ها را روی کیلومتر شمار بگذارید – 1440 مایل در روز ، 10،080 مایل در هفته ، 524،160 مایل در سال. برای کسب اطلاعات بیشتر در مورد مسائل روغن کاری ، به ستون های مربوط به روغن کاری در آوریل (در اینجا بخوانید) و ژوئن (اینجا بخوانید) 2015 Pumps & Systems 3. فشار مکش سایر عوامل کلیدی در طول عمر تحمل فشار مکش ، تراز بودن راننده و تا حدی کشیدگی لوله است. برای یک پمپ فرآیند افقی تک مرحله ای مانند مدل ANSI B 73.1 ، نیروی محوری حاصل از روتور به سمت مکش است ، بنابراین فشار مکش خنثی کننده – تا حدی و با محدودیت – در واقع نیروی محوری را کاهش می دهد ، که بارهای تحمل رانش را کاهش می دهد و به زندگی طولانی تر کمک می کند. به عنوان مثال ، یک پمپ استاندارد ANSI با فریم S با فشار مکش 10 پوند بر اینچ مربع (psig) به طور معمول می تواند عمر تحمل شش تا هفت سال را داشته باشد ، اما با مکش 200 psig ، عمر تحمل پیش بینی شده بهبود می یابد به بیش از 50 سال 4. تراز بندی درایور عدم انطباق پمپ و راننده ، بلبرینگ های شعاعی را بیش از حد بار می آورد. عمر تحمل شعاعی هنگامی که با مقدار عدم انطباق محاسبه شود ، یک فاکتور نمایی است. به عنوان مثال ، با یک عدم انطباق کوچک فقط 0.060 اینچ ، کاربران نهایی می توانند در سه تا پنج ماه کارکرد ، انتظار نوعی مشکلات تحمل یا اتصال را داشته باشند. در 0.001 اینچ عدم انطباق ، با این حال ، همان پمپ احتمالاً بیش از 90 ماه کار خواهد کرد. 5. لوله فشار کشیدگی لوله در اثر عدم هم ترازی لوله مکش و / یا تخلیه به فلنج پمپ ایجاد می شود. حتی در طراحی پمپ های قوی ، کشش لوله حاصل می تواند به راحتی این نیروهای بالقوه زیاد را به یاتاقان ها و محل قرارگیری مربوطه منتقل کند. نیرو (کرنش) باعث می شود که اتصالات یاتاقان دور نباشد و یا با دیگر یاتاقانها ناسازگار باشد به طوری که خطوط مرکزی در صفحات مختلف قرار گیرند. 6. خواص مایعات خصوصیات مایع (شخصیت مایع) مانند pH ، ویسکوزیته و وزن مخصوص از عوامل اصلی هستند. اگر مایع اسیدی یا سوزاننده باشد ، قطعات خیس شده پمپ مانند پوشش و مواد پروانه باید در سرویس نگه داشته شوند. مقدار جامد

13 Common Factors that Affect Pump Life

13 Common Factors that Affect Pump Life

13 Common Factors that Affect Pump Life

more than 45 years. The pump was designed to operate for a long time, and the user operated and maintained the pump in a manner that resulted in a half-century of trouble-free operation.

In the overall equation for reliable pump life expectancy, almost every factor is dependent on the end user—specifically, how the pump is operated and maintained. As an example, a standard L-frame American National Standards Institute (ANSI) pump can be expected to operate for 15 to 20 years—and in many cases longer than 25 years—if it is properly maintained and operated near the best/design operating point. A high-horsepower multistage diffusor pump in boiler feed service can be expected to deliver 40 years of service or more.

For a given pump design, what are some of the factors that end users can control to prolong a pump’s life?

While this is not an exhaustive list, the following 13 notable factors are important considerations for extending pump life.

1. Radial Force

Industry statistics indicate that the biggest reason centrifugal pumps are pulled from service is the failure of bearings and/or mechanical seals. The bearings and seals are the “canaries in the coal mine”—they are the early indicators of pump health and the harbingers of what is happening inside the pumping system.

Anybody who has been around the industry very long probably knows that the No. 1 best practice is to operate the pump at or near its best efficiency point (BEP). At the BEP, the pump by design will experience the lowest amount of radial force. The resultant force vectors of all the radial forces initiated from operating away from the BEP manifest at 90-degree angles to the rotor and will attempt to deflect and bend the shaft.

High radial force and the consequential shaft deflection are a killer of mechanical seals and a contributing factor to bearing life reduction. If high enough, the radial force can cause the shaft to deflect, or bend. If you stop the pump and measure the runout on the shaft, nothing would appear to be wrong because it is a dynamic condition, not a static one.

A bent shaft (deflecting) operating at 3,600 revolutions per minute (rpm) will deflect twice per one revolution, so it is actually bending 7,200 times per minute. This high-cycle deflection makes it difficult for the seal surfaces to stay in contact and maintain the fluid layer required for proper seal operation.

2. Oil Contamination

For ball bearings, more than 85 percent of bearing failures result from the ingress of contamination, either as dirt and foreign material or as water. Just 250 parts per million (ppm) of water will reduce bearing life by a factor of four.

Oil service life is critical. Operating a pump can be similar to operating a car continuously at 60 miles per hour. At 24 hours per day, seven days a week, it does not take long to put some miles on the odometer—1,440 miles per day, 10,080 miles per week, 524,160 miles per year.

For more information on lubrication issues, refer to my columns on lubrication in the April (read it here) and June (read it here) 2015 issues of Pumps & Systems.

3. Suction Pressure

Other key factors for bearing life are suction pressure, driver alignment and, to some degree, pipe strain.

For a single-stage horizontal overhung process pump such as an ANSI B 73.1 model, the resultant axial force on the rotor is toward the suction, so a counteracting suction pressure—to some degree and with limits—will actually reduce the axial force, which decreases the thrust bearing loads, contributing to longer life. For example, a standard S-frame ANSI pump with a suction pressure of 10 pounds per square inch gauge (psig) can typically expect a bearing life of six to seven years, but at a suction of 200 psig, the expected bearing life will improve to more than 50 years.

4. Driver Alignment

Misalignment of the pump and the driver overloads the radial bearings. Radial bearing life is an exponential factor when calculated with the amount of misalignment. For example, with a small misalignment of just 0.060 inches, end users can expect some sort of bearing or coupling issues at three to five months of operation; at 0.001 inches of misalignment, however, the same pump will likely operate for more than 90 months.

5. Pipe Strain

Pipe strain is caused by misalignment of the suction and/or discharge pipe to the pump flanges. Even in robust pump designs, the resultant pipe strain can easily transmit these potentially high forces to the bearings and their respective housing fits. The force (strain) causes the bearing fit to be out of round and/or incongruent with the other bearings so that the centerlines are in different planes.

6. Fluid Properties

Fluid properties (the fluid’s personality) such as pH, viscosity and specific gravity are key factors. If the fluid is acidic or caustic, the pump wetted parts such as the casing and impeller materials need to hold up in service. The amount of solids present in the fluid and their size, shape and abrasive qualities will all be factors.

7. Service

The severity of the service is another major factor: How often will the pump be started during a given time?

I have witnessed pumps that are started and stopped every few seconds. Pumps in these services wear out at an exponentially higher rate than pumps that operate continuously under the same conditions. In these cases, the system design is in dire need of change.

Pumps with a flooded suction will operate more reliably than a pump in a suction lift scenario at the same conditions. The lift condition requires more work and offers more opportunities for air ingestion or worse—running dry. See my Pumps & Systems articles on submergence (April 2016, read it here) and self-primer problems (September 2015, read it here).

8. NPSHA/R Margin

The higher the margin of net positive suction head available (NPSHA) is over net positive suction head required (NPSHR), the less likely the pump will cavitate. Cavitation will create damage to the pump impeller, and resultant vibrations will affect the seals and bearings.

9. Pump Speed

The speed at which the pump operates is another key factor. For instance, a 3,550-rpm pump will wear out faster than a 1,750-rpm pump by a factor of 4-to-8.

10. Impeller Balance

An unbalanced impeller on an overhung pump or on some vertical designs can cause a condition known as shaft whip, which deflects the shaft just as a radial force does when the pump operates away from the BEP. Radial deflection and whip can occur at the same time. I always recommend the impeller be balanced at least to International Organization for Standardization (ISO) 1940 grade 6.3 standards. If the impeller is trimmed for any reason, it must be rebalanced.

11. Pipe Geometry

Another important consideration for extending pump life is the pipe geometry, or how the fluid is “loaded” into the pump.

For example, an elbow in the vertical plane at the pump’s suction side will induce fewer deleterious effects than one with a horizontal elbow. The impeller is hydraulically loaded more evenly, so the bearings are also loaded evenly.

Suction-side fluid velocity should be kept below 10 feet per second. I recommend keeping velocities below 8 feet per second, and 6 is even better (assuming non-slurry fluids). Laminar flow in lieu of turbulent will affect how the impeller is loaded and change the rotor dynamics.

12. Pump Operating Temperature

Whether hot or cryogenic, the pump operating temperature—and especially the rate of temperature change—will have a large effect on pump life and reliability. The temperature at which a pump operates is important, and the pump needs to be designed to operate there. More important, however, is the rate of temperature change. I recommend (I am conservative) the rate of change to be managed at less than 2 F per minute. Different masses and materials expand and contract at different rates, which can affect clearances and stresses.

13. Casing Penetrations

While not often considered, the reason casing penetrations are an option rather than a standard on ANSI pumps is the number of pump casing penetrations will have some effect on pump life because these sites are prime for the setup of corrosion and stress risers.

Many end users want the casing drilled and tapped for drains, vents, gauge ports or instrumentation. Every time you drill and tap a penetration in the casing, it sets up a stress riser in the material that becomes an origin source for stress cracks and presents a site for corrosion to initiate.

Succeed at Vacuum System Troubleshooting

Succeed at Vacuum System Troubleshooting

Succeed at Vacuum System Troubleshooting

Understand the causes of common problems and how to address them.

By Keith Webb, Tuthill Vacuum & Blower Systems

When the desired vacuum condition isn’t provided at a process plant, production often comes to a halt and all eyes become focused on the vacuum pump as the root cause of the problem. However, the vacuum pump usually isn’t culprit. In almost all cases, either: 1) the pump is being operated in a condition for which it never was intended, 2) one or more of the user’s interface points with the pump (suction/discharge lines, water supply, process contaminant, etc.) are being operated outside of design parameters, or 3) the vacuum chamber or vacuum lines were improperly specified. Each vacuum pumping technology will react differently to various conditions, so it’s not possible to offer a “one size fits all” answer to the problem. The following is a guide to systematically identifying the root cause of the most common problems and correcting them based on general vacuum system recommendations as well as technology-specific issues.

Let’s start by noting that vacuum technologies found at plants generally fall into two categories: wet and dry. The terms “wet” and “dry” refer to whether or not the user’s process gas comes into contact with a liquid as the gas passes through the vacuum pump. Wet technologies utilize a liquid to create a seal between the discharge and the suction of the pump to minimize the “slip” of gas backwards from the discharge to the suction and increase volumetric pumping efficiency. Dry technologies have no liquid contact with the process gas. Table 1 lists common vacuum equipment of both types.

 

 

General Recommendations

The following points apply to all vacuum systems regardless of pump type:

Vacuum leaks. All vacuum systems have some amount of air-in leakage, which may or may not be known at the time the vacuum pump is sized. Excessive system leaks result in reduced process gas pumping capacity because the pump must move not only the process gas from the vacuum chamber but also the air-in leakage. Leaks occur at the joints of the vacuum lines and at the vacuum chamber. To avoid excessive air-in leakage, bear in mind the general recommendations of operating pressure ranges for various piping materials and joining methods detailed in Table 2. Note that actual limits will depend upon the skill level of assembly personnel.

Vacuum pump or system problem? You must determine if the issue is caused by the pump or by other equipment in the vacuum system. To find out, mount an isolation valve and an accurate vacuum gauge in-line as near to the suction connection of the vacuum pump as possible. Close the isolation valve and then measure the ultimate vacuum (also called blank-off) performance of the pump. Compare the measured vacuum to the manufacturer’s published ultimate vacuum value. A value reasonably close to the published one indicates the issue stems from leaks or outgassing in the vacuum system.

 

 

Excessive pump discharge or backpressure. A vacuum pump is designed to discharge to atmospheric pressure or just slightly above unless the manufacturer specifically designates it a compressor. As the discharge pressure of the pump increases above atmospheric pressure, this raises the differential pressure across the pump, resulting in:
• higher pump temperature and possible overheating, leading to pump seizure; and
• increased current draw and subsequent overheating of the electric motor or an overload/fuse/breaker fault.

Improperly sized suction and discharge lines. Sizing of system piping significantly affects pump performance and should be performed by qualified vacuum engineers. However, to avoid problems, apply the following guidelines:
• Suction and discharge lines never should be smaller than the suction or discharge connection size on the vacuum pump.
• For every 50 ft of suction or discharge piping, increase the pipe size by one nominal pipe diameter. Example: A vacuum pump has a 2-in. inlet connection. The suction line between the pump and the vacuum chamber is to be 70 ft long. To avoid restrictions to gas flow and pumping performance issues, increase the vacuum line to 3 in.

Isolation of pumps operated in parallel. Many vacuum pump installations consist of multiple pumps operating in parallel and utilizing a common suction and discharge header. For these type of installations, isolate idle pumps from those in operation at the suction and discharge. Failure to isolate the offline pumps may result in: 1) discharge gas from the operating pumps entering an idle pump and contaminating it, and 2) creation of vacuum in the idle pump and a resulting liquid back-stream into the vacuum lines and chamber.
Now, let’s look at specific issues that might affect particular equipment.

Liquid Ring Pumps

Several possible operating conditions can cause insufficient vacuum in liquid ring (LR) pumps. The most common are:
• too high sealant vapor pressure;
• incorrect sealant flow rate; and
• process contamination of the sealant (in full sealant recovery systems).

Too high sealant vapor pressure. A LR pump utilizes a sealant. Most commonly this is water but other liquids may be used based on the specific application of the pump. Generally, the lower the temperature of the sealant, the lower its vapor pressure, which results in increased pumping capacity and deep vacuum performance. In addition, as the process vacuum level approaches the sealant’s vapor pressure, the sealant will begin to flash from the liquid to the vapor phase (cavitation), subsequently displacing the pump’s capacity. Utilize sealant temperature/capacity correction factors from the specified LR pump manufacturer to properly size the pump.

As a rule of thumb, to avoid pump cavitation select a sealant whose vapor pressure, Pv, at operating temperature is less than half of the required vacuum level, P1, as measured at the pump inlet. For instance, the Pv of water at 60°F (15°C) is 13.3 mm Hg absolute. Therefore, the lowest vacuum operating pressure for the pump would be:

P1 = (2)(13.3) = 26.6 mm Hg

Operating the vacuum pump’s suction pressure below this level will result in cavitation of the water within the pump that ultimately can damage the pump’s impeller (Figure 1).

 

 

Water at too high a temperature supplied to the pump directly as sealant or indirectly as coolant to the heat exchanger of a full sealant recovery system will increase the sealant’s vapor pressure. As the vapor pressure increases, this value may approach the vacuum level of the pump and cause the sealant to flash and reduce the pumping capacity. In many cases, the use of cooling tower water in high ambient temperature climates (>95°F or 35°C) results in significant capacity reduction. Figure 2 illustrates the capacity reduction when operating a pump at 75 torr should water sealant become much hotter than the desired 60°F.

Incorrect sealant flow rate. Each model of a particular manufacturer’s LR pump has a specific sealant flow rate requirement to achieve the published vacuum performance. Regulate the sealant flow to within approximately ±5% of the published requirement. Simple and inexpensive flow control devices are available to regulate this flow.

If too much sealant is fed to the vacuum pump, the volume of the liquid ring within the pump will increase. This will reduce the volume of the rotor available for the pump to move process gas and the pump will lose pumping capacity, resulting in a loss of vacuum.

If too little sealant is fed to the vacuum pump, the liquid ring volume will decrease. The liquid ring no longer will be able to create the necessary seal between the rotor and the housing, allowing internal “slip” of the discharge gas back to suction and resulting in reduced pumping capacity and loss of vacuum.

 

 

Process contamination of the sealant (in full sealant recovery systems). Such contamination can involve carryover of condensate or particulates.

During the process of moving gases from the vacuum chamber through the LR pump, the process gas will contact the sealant and subsequently may collect in the sealant. If the substance collects in the sealant liquid and has a vapor pressure higher than that of the sealant, it will enter the LR pump and flash from the liquid to the vapor phase, reducing the pump’s capacity. As an example, when using oil as the LR sealant, if water vapor is a carryover product from the process gas, the vapor will condense to liquid in the discharge separator tank and effectively increase the pump sealant vapor pressure and decrease capacity.

Carryover of particulates or other solids may clog sealant piping, strainers, heat exchangers, valves, etc., and restrict sealant flow to the vacuum pump, resulting in reduced pumping capacity and possible overheating of the LR pump.

Oil-Sealed Rotary Pumps

Some of the most common field issues experienced by oil-sealed rotary piston pumps and rotary vane pumps are:

• belt squeal/high amp draw at startup;
• inability of pump to blank-off/milky oil;
• back-streaming of oil into suction lines or vacuum chamber; and
• excessive oil mist discharge.

Belt squeal/high amp draw at startup. Belt squeal of a pump at startup can stem from: 1) improper belt tensioning, 2) cold oil temperature due to low ambient temperature, or 3) improper shutdown procedure.

Typically, a loose belt causes belt squeal. Check for looseness by starting the pump and observing the deflection of the belt during rotation. Do not apply belt dressing to V-belts such as those used on Tuthill vacuum pumps. If the belt appears to have excessive deflection, refer to the manufacturer’s product manual for proper tensioning instructions.

The next likely cause of belt squeal/high amps is attempting to start the pump in low ambient temperature conditions, typically <60°F (15°C). In this case, you must install oil preheaters to increase the oil’s temperature and reduce its viscosity so the internal components don’t create high torque on the shaft. It often makes sense to use a temperature switch to ensure the pump will not start until the heaters have raised the oil temperature enough.

Lastly, oil-sealed rotary piston pumps are particularly prone to improper shutdown. A pump shut down under vacuum will leave an excessive amount of oil in the cylinder. Then, when an operator attempts to start the pump, the cold viscous oil will create high torque on the pump shaft, resulting in high amp draw. Oil-sealed pumps require that the inlet pressure of the pump be increased sufficiently (typically >100 torr for no less than 15 sec.) to allow more gas flow through the cylinder of the pump, resulting in displacement of the oil in the cylinder back into the main oil reservoir.

 

 

Inability of pump to blank-off/“milky”oil. Oil-sealed vacuum pumps commonly fail to meet the published blank-off performance due to: 1) substitution of the manufacturer’s vacuum pump oil with an improper oil, or 2) condensable process vapors collecting in the oil.

Vacuum pump operators for various reasons may not use the manufacturer’s recommended oil. This often can result in failure to produce the deep vacuum results as published. Vacuum pump oils are formulated to have a vapor pressure significantly lower than the pump’s ultimate vacuum capability. If a higher vapor pressure oil is substituted, the pump will begin to create vacuum and reach the vapor pressure of the oil in the cylinder. When this occurs, the oil will flash to the vapor phase, displace the pump’s capacity and result in higher blank-off values. The only remedy is to use an oil that has a vapor pressure equal to or less than that of the manufacturer’s vacuum pump oil. Matching the recommended oil’s viscosity also is necessary.

Many processes such as vacuum drying contain moisture that will condense when it reaches the pump’s oil reservoir at atmospheric pressure. The visual result is “milky” oil. Typically, the liquid has a vapor pressure significantly higher than the pump’s ultimate pressure. As the condensed liquid is recirculated with the oil into the cylinder (under vacuum), it begins to flash to a vapor phase. This again results in a higher-than-published blank-off value. The solution is either to: 1) run the pump’s gas ballast valve open (off process) for 15–30 minutes, allowing the incoming air to strip the moisture from the oil, or 2) change the oil more frequently. Note that failure to perform one of these procedures will result in excessive wear of the internals due to increased friction and heat and, thus, reduced pump life.

Back-streaming of oil into suction lines or vacuum chamber. This commonly stems from failure to vent the pump’s inlet prior to shutdown. As already noted, oil-sealed pumps require that the inlet pressure of the pump be increased sufficiently (typically >100 torr for no less than 15 sec.) to allow more gas flow through the cylinder of the pump, resulting in displacement of the oil in the cylinder back into the main oil reservoir.

Excessive oil mist discharge. This phenomenon typically occurs because: 1) the pump has been operated continuously at an inlet pressure greater than the manufacturer’s recommendation, or 2) the pump’s oil mist element has failed.

Oil-sealed pumps commonly are used to operate continuously at inlet pressures <10 Torr or for short pump-down cycles that don’t allow oil to saturate the pump’s oil coalescing element. If a pump is operated above the manufacturer’s recommended maximum for prolonged periods, the relatively high gas density will carry the oil into the mist element at rates beyond its maximum filtering capability. The result is oil discharge from the exhaust of the pump. The best way to avoid this situation is appropriate sizing of the pump for the system design to avoid high operating inlet pressures for prolonged periods.

The other possibility is that the pump’s oil mist element fibers have separated due to continuous saturation and high pressure differential, resulting in the escape of oil mist from the pump’s exhaust. Replacing the element commonly will solve the problem.

Dry Screw Pumps

The two most common issues related to the improper application or operation of dry screw vacuum pumps are:

• overheating and pump seizure; and
• high motor amp draw.

Note that while dry screw vacuum pumps all have some common features, the symptoms of each pump will be manufacturer and model specific.

Overheating and pump seizure. Dry screw vacuum pumps are susceptible to several potential causes of overheating. The more common are:
reduced cooling water flow/high cooling water temperature; high inlet gas temperature; and improper staging with a vacuum booster.

The dry screw pump is more sensitive to cooling water flow and temperature than other technologies. A reduction in cooling water flow rate below the manufacturer’s minimum recommendation or supply cooling water temperatures in excess of the manufacturer’s recommendation can result in thermal growth and, ultimately, seizure of the pump.

Because dry screw pumps have no internal liquids to absorb heat, their internal temperatures can range from 250°F to 450°F depending upon the screw design. So, they are sensitive to inlet gas temperatures; each pump has a manufacturer’s maximum inlet gas temperature rating. Unfortunately, this value sometimes isn’t considered during the selection process and, as a result, the pump might encounter entering gas temperatures that exceed this value, resulting in excessively high internal gas temperatures that cause thermal growth and subsequent pump seizure.

The sizing process of a pump with a vacuum booster requires consideration of several parameters. One of the most important when pairing a vacuum booster upstream of a dry screw pump is staging ratio. This is defined as the ratio of the volumetric flow rate of the vacuum booster, V1, to the volumetric flow rate, V2: SR = V1/V2. Applying Boyle’s Law: V1/V2 = P2/P1.

Because V1 always is greater than V2, the pressure between the booster and the dry screw pump, P2, always will be greater than the inlet pressure, P1, to the system. The gas compression across the booster results in a temperature rise of the gas that will enter the dry screw pump. Therefore, carefully consider this ratio to avoid exceeding the inlet gas temperature rating of the dry screw pump.

High motor amp draw. Many types of rotating machinery experience high motor amp draw. Usually the cause isn’t an issue with the motor but rather with the piece of equipment it is driving. In the case of dry screw pumps, high amp draw typically results from: excessive discharge pressure (as noted in the general section); process buildup in the machine; or internal contact due to the cooling water and inlet gas temperature noted above.

Excessive discharge pressure as well as cooling water and inlet gas temperature already have been addressed, so, let’s focus on process buildup in the machine. Many vacuum processes contain chemicals that combine at high temperatures to form sticky or tacky materials that attach and then “bake onto” the screws (Figure 3). Their buildup ultimately creates a “zero clearance” condition inside the pump. This contact within the pump leads to additional torque on the pump shaft, resulting in increased amp draw.

Consult the pump’s manufacturer for a recommended solution. Generally this will involve either: 1) knocking out or filtering the process gases upstream, or 2) supplying a cleaning flush. Option 1 is preferable in extending pump life. However, filtration units can be costly and will require continual maintenance. In addition, as the filter elements clog, a resulting loss of vacuum in the process chamber will occur.

The cleaning flush option avoids the cost of the filtration system but may pose its own operational issues that could result in damage to the pump. Moreover, there’s no guarantee of success with the flushing process. Proper choice of flushing medium is most important and requires determining whether a solvent is needed to dissolve material or if a mechanical cleaning fluid such as water will suffice; the pump manufacturer should approve the selection. When injecting a direct liquid flush into a dry screw pump, take care not to flood the pump’s screw chamber as this can result in the pump attempting to compress liquid and subsequent mechanical failure requiring a major rebuild of the machine. Lastly, when injecting a flushing liquid into the pump’s process chamber, elevate the pump’s inlet pressure sufficiently above the vapor pressure of the liquid to avoid flashing. Such flashing to vapor will compromise cleaning as well as potentially create freezing problems within the machine due to the Joule-Thompson effect.

Achieve Long-Term Success

The process of creating a successful vacuum installation consists of several steps:

• Determine the parameters of the entire cycle of the vacuum operation from startup to shutdown.
• Select the appropriate vacuum technology and material of construction to match the process vacuum and flow requirement and gases to be handled.
• Properly size the vacuum pumping equipment, vacuum chamber and suction and discharge lines.
• Commission and leak check the vacuum system and validate on the process.

The vacuum pumping technologies addressed in this article are time-proven and will give years of reliable service when appropriately applied and operated. However, when troubleshooting is required, the pointers provided here should help you properly diagnose and address issues.

Evolution Of The Laboratory Vacuum Pump

Evolution Of The Laboratory Vacuum Pump

Evolution Of The Laboratory Vacuum Pump

If one studies the evolution of the laboratory pump over the past 25 years, it becomes apparent that this is an area of significant innovation, with important developments in high vacuum technology, corrosion resistance, vacuum control, and improvements in the efficiency and ecological impact of vacuum pumps.

JOHN BUIE

 

Vacuum pumps are an essential piece of equipment and used in a wide variety of processes in most laboratories. However, despite numerous advances over the past 70 years, many industry professionals still believe that vacuum technology has not progressed, and that there is no benefit from updating a laboratory pump.


1206
However, if one studies the evolution of the laboratory pump over the past 25 years, it becomes apparent that this is an area of significant innovation, with important developments in high vacuum technology, corrosion resistance, vacuum control, and improvements in the efficiency and ecological impact of vacuum pumps.

The suction pump, a predecessor to the vacuum pump, was invented by the Arabic engineer Al-Jazari. It was not until the fifteenth century that the suction pump first appeared in Europe.

1643

The first mercury barometer was invented by Evangelista Torricelli, based upon earlier work by Galileo. The first sustained vacuum was achieved later the same year.

1654

Otto von Guericke invented the first true vacuum pump, and used it to evacuate the air between two hemispheres in order to demonstrate that they could not then be separated by two teams of horses (the famous “Magdeburg hemispheres experiment”).

1855

Heinrich Geissler invented the mercury displacement pump and used it to achieve an unprecedented vacuum of around 10 Pa (0.1 Torr).

1874

A new style of pump consisting of vanes mounted to a rotor that turned within a cavity was patented by Charles C. Barnes of Sackville, New Brunswick, Canada. This type of pump became known as the rotary vacuum pump, and took depth of vacuum to a new level.

1911

Professor Dr. Wolfgang Gaede first reported the principle of the molecular drag pump at a meeting of the Physical Society in Karlsruhe. The pump was extremely well received and was considered to be the major event of the meeting. After many problems and setbacks, the first 14 pumps were ready for sale by the fall of 1912.

1915

Irving Langmuir invented the diffusion pump, using mercury as the pump fluid. The use of mercury enabled the pump to continue working at elevated temperatures, but was soon replaced due to its toxicity.

1920s

By the 1920s, the oil-sealed rotary vane mechanism was the typical design for most primary pumps.

1926

M. Siegbahn developed the first disk-type molecular drag pump.

1929

Kenneth Hickman developed synthetic oils with low vapor pressures. These would soon prove invaluable in gas diffusion pumps.

1930

Cecil R. Burch and Frank E. Bancroft filed for a patent for the gas diffusion pump using low-vapor pressure oils. The patent was granted in 1931.

1937

C.M. Van Alta developed the first diffusion pump with a capacity of greater than 100 liters/second. Also in this year, the multistage, self fractionating diffusion pump was invented by L. Malter.

1950s

In the late 1950s, researchers at Varian invented the ion pump in order to improve the life and performance of its own high-frequency microwave tubes used in radar technology. The ion pump was able to achieve an ultra-clean vacuum environment.

1953

Raymond Herb invented the first practical Getter-ion pump, which prevented the vacuum chamber from rusting through the use of titanium metal.

1954

The single-cell ionic pump was developed by A.M. Gurewitsch and W.F. Westendorf.

1955

R. Herb invented the orbiton pump with electron-impact Ti sublimation.

1957

Researchers at Varian invented the Nobel Vaclon pump, the first electronic device to operate without fluids or moving parts and be resistant to power failures. The all-electronic pump made surface science possible for the first time.

1958

Pfeiffer Hockvakuumtechnik GmbH system design. invented the turbomolecular pump, improving on the performance of diffusion pumps and Gaede’s molecular pump. Also in this year, Varian introduced the modern Vacsorb cryosorption pump.

1960

Varian introduced the Vaclon pump, the first pump able to operate at rates of 1,000 liters/sec.

1961

C. H. Kruger and A. H. Shapiro developed the statistical theory of turbo-molecular pumping that is still the basis of much research today.

1969

K.H. Mirgel developed the vertical unidirectional turbomolecular pump.

1971

Osaka Vacuum manufactured the first domestic turbomolecular pump for smallscale applications.

1972

Varian’s Vacuum Division introduced the contra-flow concept, allowing higher test port pressures by using a simplified vacuum system design.

1974

The first oil-free piston vacuum pump was developed by John L. Farrant.

1980

Osaka Vacuum Ltd. developed the compound molecular pump.

1982

VACUUBRAND introduced the first chemistry-design pump with a full fluoropolymer flow-path. This pump’s design allowed it to overcome the performance challenges of fluoropolymer flow under pressure.

1984

The Drystar dry (oil-free) vacuum pump was patented by Edwards High Vacuum Limited. The dry claw pump became essential to the semiconductor market.

1987

VACUUBRAND introduced the first microprocessor vacuum pump controller able to detect vapor pressures and adapt vacuum levels to changing solvent conditions.

1988

VACUUBRAND introduced the first lab vacuum pumps with integrated solvent vapor recovery. These pumps allowed users to capture and recycle waste vapors rather than exhaust them into the atmosphere.

1990

VACUUBRAND introduced the first dual-application chemistry vacuum pump, capable of electronically controlling one application while providing filtration vacuum to a second port.

1991

VACUUBRAND introduced the Chemistry-HYBRID pump that integrated both a rotary vane pump and diaphragm pump on a single shaft and motor. As solvent vapors from the pump oil were continuously distilled in this hybrid pump, oil changes were reduced by 90 percent compared with single rotary vane pumps.

1994

VACUUBRAND introduced the first local-area vacuum network, subsequently named VA CUU·LAN®, with integrated check valves and chemistry-resistant components. This network allowed up to eight different lab vacuum applications to be simultaneously operated by one pump. This approach became the norm in lab vacuum supply across Europe.

1996

VACUUBRAND introduced the PC 2001, the first frequency-controlled diaphragm vacuum pump. This pump allowed vapor pressures to be electronically detected and adapted in response to changing solvent conditions without programming. It was also able to operate hysteresis-free.

1998

Varian developed TriScroll® Dry Pump, the only two-stage vacuum pump on the market at the time. This pump employed a unique, patented TriScroll pumping capability.

2000

Pfeiffer Vacuum launched the vacuum DigiLine™— the first full line of digital vacuum gauges.

2002

VACUUBRAND introduced the MD1 VARIO -SP pump, the first fully integrated 24 VDC variable-speed diaphragm pump, offering new options for instrumentation designers.

Pfeiffer Vacuum brought a magnetically-coupled line of rotary vane pumps to the market.

2004

VACUUBRAND introduced its “XP-series” of compact rotary vane pumps. These pumps had one-third of the environmental impact of traditional belt drive pumps without sacrificing vacuum and pumping speed.

2007

VACUUBRAND introduced the Peltronic® condenser, the first electronically cooled condenser that allowed vacuum pump waste vapor recovery without an external coolant for the first time.

2008

Pfeiffer Vacuum launched the HiPaceTM, capable of operating at rates of 1,000 to 2,000 liters/second.

2009

VACUUBRAND introduced the VSP 3000, the first chemistry- and shock-resistant Pirani vacuum sensor. This pump allowed robust monitoring of rotary vacuum applications, with vacuum pressures down to 10-3 mbar.

KNF Lab launched the wireless SC920 series vacuum pump system, featuring fast and precise processing, quiet operation and easy regulation of all vacuums. The wireless remote control allowed users to locate the processing equipment away from the pump to save lab space, avoid needless opening of the fume hood and remove tangled cables.

The Future For Laboratory Vacuum Pumps

Innovation in vacuum technology is currently being driven by the many diverse manufacturing and research processes that rely on vacuum systems, particularly the manufacture of semiconductors. With increasing demand for reliable and efficient vacuum techniques, the rate of innovation looks likely to increase in the immediate future.

Experts predict that vacuum pumps of the future will offer greater reliability and be able to operate for longer periods of time before maintenance is required. Laboratory pumps are also expected to be smaller, more efficient, and generate less heat, noise and vibration. It is likely that they will also better resist corrosion and be easier to clean and repair.

Technological developments are likely to include higher shaft speeds and innovation in pumping mechanisms for improved performance. Vacuum pumps are also expected to incorporate novel materials and improved design to further improve performance and reduce operating costs.

 

6 Questions You Should Ask When Buying a Vacuum Pump

6 Questions You Should Ask When Buying a Vacuum Pump

Top 6 Questions You Should Ask When Buying a lab vacuum pump

1. What will you be using the vacuum for? Filtration needs modest vacuum. Evaporation requires deeper vacuum. Molecular distillation requires even more. Match the pump to the use.

2. Can you use a dry (oil-free) vacuum pump? Oil-free vacuum pumps can support most lab applications. For the service advantages, choose a dry pump where possible.

3. What is the pumping capacity at the intended vacuum level? Actual pumping speed declines from the nominal speed as depth of vacuum increases. The rate of decline differs among pumps.

4. Do you work with corrosive media? Standard duty pumps have lower purchase costs, but corrosion-resistant pumps will have lower lifetime costs if working with corrosives.

5. Should you invest in vacuum control? Electronics can improve reproducibility, protect samples and shorten process times when specific vacuum conditions need to be maintained.

6. What is the lifetime cost of operation? Include purchase cost, service intervals, servicing cost, pump protection (e.g., filters, cold traps), and staff time for operation.

Types of vacuum pumps our readers are using in their labs:

Rotary vane pump 16%
Dry diaphragm vacuum pump 37%
Water or air aspirator 36%
Deep vacuum pump 28%
Filtration pump 26%
Turbo Pump 2%
Other 3%

Vacuum pumps are suited for a wide variety of laboratory applications. Below are some of the applications the respondents use their vacuum pumps for in their labs:

Vacuum or pressure filtration 48%
Dry diaphragm vacuum pump 29%
Degassing 29%
Mass spectrometry 28%
Rotary evaporator 26%
Freeze drying 18%
Gel dryer 10%
Liquid aspiration 3%
Other 5%

The top 10 factors/features for our readers when they are buying a vacuum pump:

Most Important/Important Not Important Don’t Know
Durability/performance 96% 3% 1%
Price 92% 4% 4%
Ease of Use 91% 7% 2%
Leak-tightness 89% 8% 3%
Pump speed 85% 9% 6%
Warranties 85% 12% 3%
Safety and health features 82% 12% 6%
Low maintenance costs 81% 14% 5%
Availability of supplies
and accessories
80% 16% 4%
Noise level—quiet 80% 17% 3%

Recently Released Vacuum Pumps

Proper Maintenance of OilSeal High Vacuum Pumps

Proper Maintenance of OilSeal High Vacuum Pumps

Proper Maintenance of OilSeal High Vacuum Pumps
Practical, step-by-step instructions for oil changes and
power flushes
John L. Brock, Sales Engineer
Welch Vacuum Pumps, a Gardner Denver Product
Properly maintained vacuum pumps will provide many
years of reliable, maximized performance. This article
addresses simple ways to maintain such vacuum
pumps and options for what to do when pump
performance is compromised due to oil contamination
and degradation.
Principles of Operation
Oil-Seal, Rotary Vane vacuum pumps pull millitorr-level
vacuum (‘high vacuum”) by sweeping intake air and
vapors from the intake port around to the exhaust port.

Note in the diagram above how the rotor is offset in the
chamber, or “stator”. The rotor is set with only 1/1000”
clearance from the top of the stator. Vacuum pump oil
seals this tiny gap and prevents regurgitation of the
airflow. For this reason this technology is referred to as
“oil seal, rotary vane” vacuum pumps. Vacuum pump
oil also lubricates the vanes, which are spring loaded
so they always push to the inside wall of the stator,
allowing for very efficient sweeping action. In a “two
stage” pump, the exhaust from the first stage chamber
is fed into the intake of the second stage and lowers
the vacuum level achieved down to, or below, 1 millitorr
(1 X 10-3 mm Hg) residual pressure.
When a vacuum pump is first evacuating, the oil vapor
pressure is high enough that a visible amount of oil

continued on page 2
continued on page 3

Vacuum Pump Technology

Vacuum Pump Technology

Vacuum Pumps and Blowers

Vacair Superstore offer the latest technology within the new Vacuum Pumps and Blowers sector, with vacuum and pressure being given as efficiently and economically as possible. We have over 20 years of dedicated proven supply to a vast array of vacuum pump applications within many industries. By choosing Vacair Superstore you will gain access to the widest choice of Vacuum Pumps from stock, for immediate delivery in the UK.

https://asiapumps.ir

Vacuum Pump Technology

Vacair Superstore provide you with the latest in vacuum pump technology including but not limited to:

Claw Pumps

Claw pumps are one of the latest technologies within vacuum pump and pressure pump technology. The working principle of this pump allows 2 claw shaped rotors to rotate in a synchronised way within a moulded cylinder body. They work with fine tolerances and because the unit claw used to generate the vacuum or pressure are contactless there is no need for lubrication within the cylinder body. Because of the lack of contact within the cylinder body they have a much longer life than traditional pumps and have very little need for maintenance over this extended life.

Applications include: Wood working, Printing, Cardboard Box Manufacture, Sewage Treatment, Pneumatic Conveying plus many others.

https://asiapumps.ir

Dry Running Rotary Vane Vacuum Pumps

These pump units have a rotor position eccentrically in a cylindrical body. The rotor is made with slots in it to house graphite pump vanes, more commonly knows as carbon pump vanes. The rotor is turned usually by a motor creating a centrifugal force which pushes the carbon pump vanes outwards from the slot to run against the cylinder body, which then creates separate chambers between each carbon pump vane.

Because the rotor is in an eccentric position within the cylinder body, as the rotor turns this then compresses or expands the volume of air in each chamber, meaning the pump unit draws air in from the inlet port and exhausts compressed air through the outlet port, thus creating vacuum and pressure.

The Carbon Pump Vanes that are used are self lubricating meaning there is no need for the unit to have a lubrication agent like oil so hence the unit is called a dry running vacuum pump.

Applications include: Woodworking, Pick and Place, Water Aeration, Sewage Treatment, Printing, Print Finishing plus many others.

https://asiapumps.ir

Oil Lubricated Rotary Vane Vacuum Pumps

Oil lubricated rotary vane vacuum pumps units work on very much the same principle as dry running rotary vane pumps. Except that the presence of oil as a lubricant enables finer tolerances in the vacuum pump, thus meaning higher levels of vacuum can be achieved, so these units are used when applications demand a higher level of vacuum.

Applications include: De-Gassing, Vacuum Bagging, Food packaging, Vacuum Forming, Hospital Vacuum, Laboratory, Autoclave plus many others.

https://asiapumps.ir

Side Channel Blowers

The operating principle behind Side channel blowers is simple. Internally the side channel blower has an impellor (fan) with small fins on it, the rotation of this impellor within the impellor housing (stator) creates a centrifugal force and this in turn creates small vortexes of air that are drawn by these fins from the intake to the exhaust. The unit is mechanically contactless meaning there are no parts that come into contact leading to the units themselves not requiring any routine maintenance. One of the major advantages to Side Channel Blowers are the units can run continuously when fitted with pressure or vacuum relief valves to protect the pump making them a robust unit that can deliver large volumes of air.

Applications include: Pneumatic Conveying, Vacuum Holding, Water Aeration, Sewage Treatment, Vacuum Lifting, Paper Handling plus many others.

https://asiapumps.ir

Invertor Driven Vacuum Pumps

Invertors can be fitted to several pumps to help with efficiency, as the pumps speed can be variably driven and worked in tandem with the machine it is serving. In today’s world where costs have to be examined, these variable speed units can play an important part in reducing energy consumption as the invertor driven units are super-efficient due to the ability to fine tune the speeds they work at.

Invertor driven vacuum pumps are used on dry running unit applications.

https://asiapumps.ir

Liquid Ring Pumps

Liquid Ring pumps have an impeller with fins attached to a central shaft, that is mounted eccentrically inside a cylinder body. The working principle is very much the same as rotary vane pumps for this reason. When working the impeller pushes the liquid sealant (water) to the outside of the cylinder body using centrifugal force, hence forming a liquid ring at the outer edge of the cylinder body.

Applications include: De-Gassing, Vacuum Forming, Extruding machines, Vacuum Holding, Pottery, Chemical/Pharmaceutical plus many others.

https://asiapumps.ir

The Leaders in Vacuum Pumps

We offer vacuum pumps from some of the world’s leading manufacturers such as Becker, Busch, DVP, Elmo Rietschle, Gardner Denver, Oerlikon Leybold, Orion plus many others but we also offer our own branded European made vacuum pumps too! This gives you the ultimate choice for your vacuum pump requirement.

Vacuum Expert Staff

By choosing Vacair Superstore you will also gain access to experienced and expert advice from our factory trained technical staff. They know everything about Vacuum and have experience of vacuum pumps working within many different industries requiring vacuum, from new projects to established common applications. So please call us on +44 (0) 113 2088 501 if you are unsure of your vacuum requirement or indeed which vacuum pump technology would best serve your application.

Accelerate Research by Tuning Up Vacuum-Driven Applications

Accelerate Research by Tuning Up Vacuum-Driven Applications

Accelerate Research by Tuning Up Vacuum-Driven Applications

Medicinal Chemists, Organic Chemists, Biochemists,
Biologists, Molecular Biologists and other scientists rely
upon vacuum-driven devices to concentrate, dry, or
filter their materials.
If a Vacuum System is not performing optimally, it can
slow preparation of research-critical samples by as
much as 50%-100%! This can have significant impact
on time-to-market, or on research paper productivity.
Doesn’t it make sense to be certain that your Vacuum
Systems are operating at peak efficiency?
Vacuum System Audits
Welch Vacuum Pumps (a Gardner Denver Product)
provides a free service to its customers: the Vacuum
System Audit Program. This service is designed to
raise awareness on the importance of the subject, and
teach researchers the steps in the process. These
steps are also outlined below.

موتور وکیوم چیست ؟ | موتور وکیوم را بشناسید

موتور وکیوم چیست ؟ | موتور وکیوم را بشناسید

پمپ وکیوم چیست؟

وکیوم یا خلاء به محیطی گفته می‌شود که فشار هوای آن محیط کمتر از فشار جو باشد.

پمپ وکیوم https://asiavacuumpumps.com
پمپ وکیوم چیست؟

منظور از وکیوم یا خلاء محیطی است که فشار هوای آن محیط کمتر از فشار جو باشد و براساس میزان فشار هوا به چهار گروه اصلی طبقه بندی می‌شوند:

  • وکیوم پایین
  • وکیوم متوسط
  • وکیوم بالا
  • وکیوم فوق بالا

اساس کار پمپ وکیوم

پمپ وکیوم‌های PVI از دو قسمت اصلی روتور ROTOR (شفت و پروانه) و بدنه (سیلندر و سر سیلندرها) تشکیل شده است که در عین مکانیسم عمل ساده از کیفیت بهروری بالائی برخوردار است.

جنس قطعات پمپ‌ها از کیفیت بالا و عملیات ماشینکاری آنها بر طبق استانداردهای ISO,DIN با دقت‌های در حد صدم میلیمتر صورت می‌گیرد که باعث حداقل نشت داخلی و افزایش راندمان دستگاه می‌شود.

هر دستگاه از لحاظ ظرفیت، فشار، میزان خلاء، مصرف قدرت و راندمان‌های مختلف آزمایش کامل می‌شود و کلیه قطعات در مراحل اقلام ورودی، ماشینکاری، ساخت، مونتاژ و تحویل نهائی ۱۰۰% توسط بخش Q.C کارخانه کنترل می‌شود.

مکانیسم عمل پمپ وکیوم

حرکت دورانی و خارج از مرکز پروانه حول محور پمپ وکیوم در داخل سیلندر محتوی آب سبب تشکیل رینگ آب می‌شود. در جهت دوران با ورود و خروج مداوم پره‌ها در داخل آب، حجم بسته فضای بین دو سرسیلندر، هر دو پره و جداره داخلی رینگ آب در یکطرف افزایش می‌یابد و عمل مکش صورت می‌گیرد و در طرف دیگر کاهش یافته ( ناحیه دهش ) و عمل تراکم انجام می‌پذیرد.

عمل خنک کردن پمپ وکیوم بوسیله آب انجام می‌شود و می‌توان از کندانس ذرات آب همراه هوای خروجی و برگشت آن به پمپ نیز استفاده کرد که در نتیجه خنک شدن پمپ و تثبیت درجه حرارت واکنش تراکم بصورت ایزوترمال انجام می‌شود.

محفظه خلأ ( مخزن وکیوم)

محفظه خلأ ( مخزن وکیوم)

محفظه خلأ (Thermal Vacuum Chamber)

محفظه خلأ محیط بسته صلبی است که توسط پمپهایی مخصوص، هرگونه گاز و هوای موجود در آن تخلیه شده تا شرایط خلأ جهت انجام آزمایشهای فیزیکی را فراهم آورد. این شرایط جهت آزمایش عملکرد تجهیزات مختلف از جمله سنجندههای فضایی کاربرد دارد.

محفظه خلأ محیط بسته صلبی است که توسط پمپ هایی مخصوص، هرگونه گاز و هوای موجود در آن تخلیه شده تا شرایط خلأ جهت انجام آزمایشهای فیزیکی را فراهم آورد. این شرایط جهت آزمایش عملکرد تجهیزات مختلف از جمله سنجنده های فضایی کاربرد دارد. نمونه های این تجهیز که از جنس آلومینیوم ساخته شده باشند، اجازه کنترل شرایط مربوط به میدانهای مغناطیسی داخل محفظه را نیز برای کاربر فراهم می آورند. در مقابل نمونه های تولید شده از جنس استیل، از تاثیر هر گونه میدان مغناطیسی در داخل محفظه جلوگیری میکنند. همچنین در کاربردهای مربوط به آزمایشگاههای سنجش از دور، امکان کنترل شرایط دمایی محفظه نیز حائز اهمیت میباشد. در قسمتهای مختلف محفظه های خلأ، معمولاً چندین مجرای ورودی و خروجی تعبیه میشود تا امکان بررسی و آزمایشهای مورد نظر بر روی تجهیز واقع شده داخل محفظه را فراهم آورد.
https://vacuumpumps.ir/
محفظه خلا جهت تست سنجنده TIRS ماهواره LandSat 8
 •
https://vacuumpumps.ir/
                       محفظه خلا تست ماهواره CHEOPS آژانس فضایی اتحادیه اروپا
 •
بطور کلی میتوان گفت که محفظه های خلأ حرارتی که در کاربردهای کالیبراسیون سنجنده های فضایی، مورد استفاده قرار می-گیرند به منظور شبیه سازی شرایط خلأ و دمای فضا، پس از پرتاب سنجنده کاربرد دارند. با قرار دادن سنجنده در این محفظه و بررسی نحوه کارکرد آن، میتوان به پیش بینی مشکلات احتمالی و نحوه پاسخدهی آن در شرایط واقعی پی برد. برخی از نمونه های این تجهیز علاوه بر شرایط خلأ و دمای شبیه سازی شده، مجهز به موتورهای دورانی جهت شبیه سازی سرعت زاویه ای وارد به سنجنده نیز میباشند. هر محفظه با بهره گیری از سیستمهای پمپاژ، سیستمهای ترموکوپل و قرائت دقیق، امکان کنترل شرایط داخلی را فراهم میآورد. همچنین جهت کنترل دمای داخل محفظه از سیستم فریز کننده Polycold  و مجموعه از گرمساز ها استفاده میشود. به همراه این تجهیز، نرم افزار جانبی و سیستم کنترل نیز ارائه میشود.
 •
 https://vacuumpumps.ir/
برخی از مدل های محفظه خلا (بدنه مرکزی)
آدرس کوتاه شده: https://isa.ir/s/mfanh0
وکیوم فرمینگ ورق ABS

وکیوم فرمینگ ورق ABS

وکیوم فرمینگ ورق ABS

در مرحله اول با مشخصات کامل مواد پلیمری اکریلونیتریل بوتادین استایرین یا ABS آشنا می شویم.

یکی از مهم ترین و پر مصرفترین ترپلیمرهایی که به صورت تجاری تولید میشوند ABS͵ است که در صنایع خودروسازی،الکتریکی و خانگی کاربرد فراوان دارد.

یکی از مهم ترین و پر مصرفترین ترپلیمرهایی که به صورت تجاری تولید میشوند ABS͵ است  .این ترپلیمر که از سه جزئ آکریلو نیتریل و بوتادی ان و استایرن تشکیل شده است,با تغییر در درصد هر یک از مونومر ها می توان برای  کاربری خاص اصلاح کرد.البته باید در نظر داشت در صد بیشتر به پلی استایرن اختصاص دارد. این پلیمر  را میتوان در بدنه لوازم خانگی مثل: تلفن͵ جاروبرقی͵ چایی ساز و لولزم الکتریکی و قطعات خودرو… مشاهده کرد.
مشخصات مواد پلیمری اکریلونیتریل بوتادین استایرین یا ABS (وکیوم فرمینگ ورق ABS)
نام ماده (فارسی): اکریلونیتریل بوتادین استایرین
نام ماده (انگلیسی):Acrylonitrile-butadiene-styrene
نام تجاری (فارسی): ای بی اس
نام تجاری (انگلیسی):ABS
مواد مرتبط:استایرن ، اکریلونیتریل ، پلی بوتادین
مجتمع های تولیدکننده:پتروشیمی تبریز
محل تحویل : پتروشیمی تبریز
بسته بندی : کیسه های ۲۵ کیلوگرمی سه لایه از جنس پلی اتیلن با یک لایه مشکی رنگ

نحوه تولید ABS: (وکیوم فرمینگ ورق ABS)

ABS. به وسیله روش های گوناگونی قابل تهیه است. روش اول شامل مخلوط کردن کوپلیمر مکانیکی بوتا دی ان_اکریلونیترات (BAN) با کوپلیمر استایرن_اکریلونیترات (SAN) است. گوناگونی حالت ها در مخلوط کردن SAN با پلی بوتا دی ان است. معمولا کوپلیمریزاسیون استایرن و اکریلونیترات با ترکیب با پلی بوتا دی ان به دست می آید .هر کدام از روش ها منجر به تولید پلیمری میشود که خواص بسیار برتری نسبت به پلی استایرن با مقاومت ضربه ای بالا دارد.

کاربرد ABS: (وکیوم فرمینگ ورق ABS)

در بسیاری از کاربرد هاABS به وسیله تزریق͵ قالبگیری دمشی و اکستروژن

 تولید میشود.کاربرد اصلیABS در صنایع خودرو سازی و در ساخت قطعات بدنه خودرو است.

دیگر کابرد های عمده آن شامل لوله ها و اتصالات قطعات تزریقی مانند اسباب بازی های لوگو

تلفن ها ͵بدنه لوازم خانگی و  پوشش ابزار آلات الکتریکی دستی از دیگر کاربردهای این پلاستیک است.

اسباب بازی

نکاتی در مورد بازیافت این ماده در ایران: (وکیوم فرمینگ ورق ABS)

از اصلی ترین فرآیندهای بازیافت ABS͵حرارت دهی و خرد کردن است. هنگام گرانول کردن تنظیم دما  برای جلوگیری از تخریب حرارتی و زرد شدن بسیار مهم است.

یکی از اصلی ترین مشکلاتی که در بازیافتABS رخ میدهد ͵آلودگی از جانب پلی استایرن با مقاومت ضربه ای بالا یا های ایمپکت است که تاثیرات جدی  بر روی خواص مواد بازیافتی میگذارد. در ایران این جداسازی قبل از آسیاب کردن از طریق استفاده از بنزین صورت می گیرد که اگر حل کند های ایمپکت است و اگر حل نکند ABS می باشد.اگر این مخلوط با های ایمپکت به صورت آسیابی باشد از طریق آب نمک جداسازی صورت می گیرد .در دنیا برای تفکیک با دقت بالا از روش الکتروستاتیک و کف شناوری استفاده می گردد.

لوازم خانگی

آلیاژهای ABS: (وکیوم فرمینگ ورق ABS)

تعداد زیادی از آلیاژهای متداولABS عبارتند از: آلیاژهای /PCABS با مقاومت حرارتی͵ مقاومت ضربه ای و فرآیندپذیری بهبود یافته ;آلیاژ ABS/PVC با تاخیر اندازندگی شعله و مقاومت ضربه ای بهود یافته آلیاژهای نایلون/ ABS با مقاومت شیمیایی و حرارتی بهبود یافته و آلیاژهای پلی سولفات  ABS/ با سفتی محیطی و مقاومت حرارتی و شیمیایی.

آیا این پلیمر در پتروشیمی ها ی ایران تولید می شود؟

پتروشیمی قائد بصیر و پتروشیمی تبریز از تولید کنندگان این محصول در ایران می باشند.

‌ ABS در ۵۰ گرید تولید می گردد که گریدهای معمولی ، گریدهای مقاوم در برابر حرارت ،

ضد شعله و قابل آبکاری را شامل می شود و بسیاری از این ها در پتروشیمی قائد بصیر تولید می گردد.

تولید ورق ABS و استفاده آن در بسته بندی وکیوم فرمینگ ورق ABS (وکیوم فرمینگ ورق ABS)

مواداکریلونیتریل بوتادین استایرین یا ABS که به صورت گرانول در خط تولید ورق ABS قرار می گیرد و به صورت ورق با ضخامت مشخص تولید می شود
ورق تولید شده در دستگاه وکیوم فرمینگ که می تواند دستی یا اتوماتیک باشد قرار می گیرد و با گرمای دقیق و مشخصی که به آن داده می شود و با استفاده از قالب وکیوم فرمینگ و خلاء ایجاد شده وکیوم فرمینگ ورق ABS صورت می گیرد و به دلیل سختی و محکمی در بسته بندی وکیوم فرمینگ بیشتر برای ساخت استند های رومیزی استفاده می شود.
وکیوم فرمینگ میلاد تولید کننده انواع استند های رومیزی تبلیغاتی مختلف
Dry (Oil-less) Vacuum Pumps Rotary Claw – Piston – Screw – Vane

Dry (Oil-less) Vacuum Pumps Rotary Claw – Piston – Screw – Vane

https://asiavacuumpumps.com

Dry Claw Vacuum Pumps

Air-cooled, compact and oil free, dry claw vacuum pumps are increasingly becoming the pump of choice for medium vacuum applications. Designed for long life and ease of maintenance these pumps exhibit modern design features such as corrosion resistance and modular configuration for easy disassembly and repair.

Typically applications include CNC routing, pneumatic conveying, milking parlors ans central hospital vacuum. VFD compatible

DRY CLAW PUMPS

https://asiavacuumpumps.com

Dry Piston Vacuum Pumps

Made for laboratory or office use, these pumps are small & compact. Operating on 115v power, these pumps can operate anywhere a power outlet is available.

Applications include medical, dental, biological filtration, chip mounting/holding, air sampling, packaging and others. Flow 4.5-11.6 cfm

DRY PISTON PUMPS

https://asiavacuumpumps.com

Dry Screw Vacuum Pumps

These pumps are made for process vacuum applications where heavy contaminated gas streams are present. The ability to pump heavy vapor loads and off pH gases at low pressures (<0.5mm Hg), these units are ideally suited for chemical and pharmaceutical processing, solvent reclamation, dehydration and crystallization.

Flow capacities up to 470 cfm

Innovative Vacuum and Leak Detection Solutions

Innovative Vacuum and Leak Detection Solutions

Innovative Vacuum and Leak Detection Solutions

Agilent vacuum pumps, pumping systems, measurement instruments, components, and helium leak detectors allow you to create, measure, and maintain vacuum for your applications, processes, or research. Learn about Agilent’s clean, dry, quiet IDP scroll pumps, high performance, high compression TwisTorr turbo pumps, optimized, UHV/XHV ready ion pumps and controllers, and rugged, reliable helium leak detectors.

Agilent leverages its Varian Vacuum roots to fulfill your vacuum needs with product value and experienced, knowledgeable support. Agilent pumps, systems, and components enable advanced research in physics, analytical instrumentation, and nanotechnology, they are also a perfect fit for industrial processes.

Ion Pumps & Controllers

Ion Pumps and Control Units for Ultra High (UHV) and Extreme High Vacuum (XHV)

Turbo Pumps & Controllers

High Vacuum Turbo Pumps and Controllers for Optimal Vacuum Performance

Turbo Pumping Systems (TPS)

High Vacuum Turbo Pumping Systems to Optimize Vacuum in Your Laboratory or Plant

Diffusion Pumps

Oil Diffusion Vacuum Pumps for Demanding High Vacuum Applications

Dry Scroll Pumps

Clean, High Performance, Oil Free Scroll Pumps

Oil Sealed Rotary Vane Pumps

Mono and Dual Stage, Oil Sealed Rotary Vane Pumps for Broad Applications

Roots Pumps (RP) & Roots Pumping Systems (RPS)

Roots Pumps and Roots Pumping Systems to Boost Pump Down Speed

Helium Leak Detectors

Ensure Stability and Performance in Any Leak Detection Application

Vacuum Measurement

High Quality Gauges and Controllers for Accurate Vacuum Measurement

Vacuum Components

Reliable Components for your Vacuum Instruments

Vacuum & Leahttps://asiavacuumpumps.comk Detection Software

Vacuum and Leak Detection Software and App to Optimize Workflows

WHAT IS VACUUM MASS SPECTROMETRY?

WHAT IS VACUUM MASS SPECTROMETRY?

WHAT IS VACUUM MASS SPECTROMETRY?

WHAT IS MASS SPECTROMETRY?

Mass spectrometry – an analytical technique that measures the mass-to-charge ratio of ions and, in forensic science, one of the best ways for toxicologists to identify and analyse substances.

In the forensic community, it’s heralded as the “gold standard” and the “near universal test” for isolating and assessing unknown agents. As a result, its widest application is in the analysis of drugs (including drug metabolites and drug paraphernalia).

THE HISTORY OF MASS SPECTROMETRY IN DRUGS AND TOXICOLOGY

Though mass spectrometers have been around for more than five decades, they remain the go-to for forensic analysis of drugs. According to the Office of Justice, drug identification remains the most frequently submitted evidence request to forensic laboratories, and mass spectrometers play a defining role in the process.

However, while mass spectrometers are widely used now, they have evolved considerably since their conception. In fact, it wasn’t until the 1950s and onwards that they really came into their own.

In the mid-1940s, mass spectrometers were far too big, expensive and difficult to operate. Some were customised to the extent operators had no idea how to use them and to make matters worse, some came with no guidance (manuals or instructions) whatsoever, making interpreting results difficult!

It wasn’t until the mid-1950s that some of these problems were resolved. In the 1950s, John H. Beynon and Fred W. McLafferty contributed to the launch of “organic mass spectrometry”, giving more guidance to users of the devices. Then in 1959 and onwards, Klaus Biemann and Carl Djerassi’s groups helped extend the capabilities of mass spectrometers, enabling them to analyse natural products and botanical extracts (including alkaloids, cannabis and cocaine).

Then, in 1968 R. J. Martin and T. G. Alexander utilised high resolution mass spectrometry (HRMS) and “cracking patterns” to help identify the hallucinogen dimethyltryptamine (DMT) in a casework sample. Analysing this problem would’ve required a major research project a few years ago – instead, it became a simple exercise problem.

By 1971, toxicologists and scientists were solving hundreds of overdose cases using gas chromatography mass spectrometry (GC-MS) and computer-assisted database searching. A group at the National Institute of Health had utilised this method – including analyses of blood serum and stomach contents – to rapidly scale the process.

A few years later (1973), a Swedish team developed a GC-MS assay for tetrahydrocannabinol in human blood that was sensitive enough to detect if someone had smoked “one half-billionth of a gram”. Mass spectrometry was evolving at an incredible rate.

Shortly after, in 1977, mass spectrometry data from the Environmental Protection Agency (EPA) was admitted as evidence in a case involving the detection of a pesticide in animal tissues. The following year a judge ruled to allow mass spectrometry test results as evidence in a capital murder case.

Fast-forward to today and mass spectrometry is widely regarded as the best available technology for the analysis of unknown agents – and dozens (between the 1940s and late 1970s) have contributed to the development of the technology – some of whom are not included in this blog.

THE HISTORY OF MASS SPECTROMETRY IN ARSON, GUNSHOT RESIDUE AND EXPLOSIVES

  • Arson

As well as drug identification, mass spectrometry is also used in cases where arson, gunshot residue and explosives are involved.

In 1959, Joseph Nicol – a firearms technician at the Chicago police crime lab – suggested that crime labs at large universities or oil companies could use the GC-MS tests for high-priority arson cases.

  • Gunshot residue (GSR) and explosives

The first tests used to determine whether or not someone had fired a gun by GSR was the “paraffin test”. This test involved pouring hot paraffin wax over a suspect’s hand and conducting a colour test on the cooled wax.

Needless to say, the test was both painful and unreliable, so alternative approaches – enter mass spectrometry – were developed, including neutron activation analysis (NAA), graphite furnace atomic absorption spectroscopy (GFA AS), GC-MS, inductively coupled plasma-MS (ICP-MS), liquid chromatography-tandem mass spectrometry (LC-MS/MS, and DESI MS/MS.

In the 1980s, GC-MS was acceptable to use in GSR cases, but the American Society for Testing and Materials (ASTM) developed a standard in 1994 that recommended scanning electron microscopy/energy dispersive x-ray spectroscopy (SEM-EDS) to determine the presence of lead, antimony and barium in the appropriate morphological particles. SEM-EDS remains the main choice for GSR.

To learn more about how vacuum technology is utilised in various fields such as medical equipment, transportation and space research, check out our guide to Vacuum Applications.

HOW MASS SPECTROMETRY IS USED FOR TRACE, FIBRES AND HAIR

The earliest applications of mass spectrometry in the analysis of trace, fibres and hair was limited in that it could only detect trace-level impurities. Due to the low concentration of inorganic elements in human hair, only the most abundant elements could be studied.

However, from the 1950s through the early 60s, spectroscopic methods like flame atomic absorption (FAA) enabled the detection of abundant metals like iron, copper and even mercury and lead in cases of poisoning.

Ion microprobe mass spectrometry (IMSS), was found to be the next reliable approach, but its application to human hair ultimately failed to meet the criteria of the time because 1) it had not acquired acceptance in the scientific community and 2) the results were not sufficiently reliable or accurate.

Next came the introduction of pyrolysis mass spectrometry (Py-MS). Pyrolysis-GC-MS (Pyr-GC-MS) was introduced to the forensic community by Saferstein et al. and Hughes et al. in their 1977 studies on man-made fibres and polymers. In fact, Pyr-GC-MS is still commonly used in today’s trace labs to study fibres and polymers – testament to its accuracy and efficacy.

THE FUTURE OF MASS SPECTROMETRY

Mass spectrometry has a rich and interesting history – particularly in the legal/forensics community where it has been able to provide some of the most reliable evidence in cases. Mass spectrometry has evolved considerably over the years and will no doubt continue to advance.

The trend today is to offer standardised procedures and solutions in instruments that deliver robust results. The operators of the mass spectrometers then do not require a scientific education but deliver data that cannot be interpreted differently in legal courses.

WHAT ARE VACUUM THIN FILMS?

WHAT ARE VACUUM THIN FILMS?

WHAT ARE VACUUM THIN FILMS?

WHAT ARE THIN FILMS? 

Thin Films are layers of material on surfaces with a thickness well below a nanometer up to a micrometer. There are multiple reasons to coat a device with a thin film. These can be protective films to prevent corrosion, decorative layers on jewellery or bathroom fittings, wear protection on tools, multiple layers to improve optical properties on optics, in semiconductor or solar cell production. Many products in our daily use have coatings. Examples are smartphones and packaging foils for food; thin film technology in the automotive industry includes applications like coated reflectors in head lights and head-up displays.

Thin film coating uses several vacuum technologies like evaporation or sputtering. Both require pressures in high vacuum. Devices range from small laboratory coaters for film development to large machines for architectural glass coating.

To learn more about how vacuum technology is utilised in various fields such as medical equipment, transportation and space research, check out our guide to Vacuum Applications.

WHAT TO EXPECT FROM THE CONFERENCE

This international conference covers significant areas of vacuum technology. Topics will be

  • Applied Surface Science
  • Biointerfaces
  • Plasma Science & Technique
  • Surface Engineering
  • Surface Science
  • Thin Films
  • Vacuum Science & Technique
  • Electronic Materials and Processing
  • Nanometer Structures
شرایط نگهداری پمپ وکیوم روتاری روغنی

شرایط نگهداری پمپ وکیوم روتاری روغنی

شرایط نگهداری پمپ وکیوم روتاری روغنی

بازرسی پمپ وکیوم پره روتاری  روغنی

1-سطح روغن پمپ را بررسی کنید
2-نشت روغن در کاسه نمد شافت جلو را بررسی کنید:
3-نشت روغن بین محفظه روغن و محفظه اتصال را بررسی کنید
4-فیلترهای روغن و اگزوز را بررسی کنید
4-نوع روغن را مشخص کنید
5-دمای فیلتر روغن را با دمای پوشش پمپ مقایسه کنید
6-شرایط روغن را بررسی کنید (نمودار فقط مربوط به هیدروکربن است) وقتی روغن یک رنگ چای تیره است ، تغییر روغن لازم است (شماره 4 – تصویر بالا را ببینید)
7-کوپلینگ موتور را برای وجود صداهای بررسی کنید
8-پروانه فن موتور و فن های خنک کننده را بررسی کنید
9-فیلتر روغن را از نظر نشتی بررسی کنید
10-پمپ را برای نصب سطح بررسی کنید
11-فیلترهای اگزوز را بررسی کنید
12-عملکرد بالست گاز / فیلتر بالاست گاز تمیز را بررسی کنید
13-دام آلودگی تمیز
14-عملکرد شیر برگشتی ضد مکش را بررسی کنید
15-دمای پمپ را در ناحیه شیشه مشاهده کنید
16-تمام واشرهای تخت را روی شاخه های تخلیه / پر کردن بصری بازرسی کنید
17-شیر شناور را چک کنید (در صورت وجود)
18-تسمه های محرک را از نظر سایش ، کشش بررسی کنید
19-آب خنک کننده را بررسی کنید (در صورت وجود)
20-مبدل حرارتی / پمپ را از نظر نشت آب بررسی کنید (در صورت وجود)
21-خواندن دما را در شیر حرارتی بررسی کنید
22-تمیز کردن رادیاتور / جریان هوا را بررسی کنید
23-تمیزکاری محلی که پمپ در آن استفاده می شود را بصری بررسی و ثبت کنید
برای کسب راهنمایی بیشتر در مورد کار با پمپ های چرخشی

021-66791775

021-66791776

چگونگی تکامل علم وکیوم(خلا)

چگونگی تکامل علم وکیوم(خلا)

چگونگی تکامل علم وکیوم(خلا)

تکامل علم خلاuum که از قرن هفدهم آغاز شد ، بسیاری از دستاوردهای علمی دیگر را منعکس کرده است ، از جمله توسعه قوانین گاز و کشف الکترون. با این وجود ، دنیای وکیوم هنوز هم مهندسان و دانشمندان را هیجان زده و جلب می کند. در واقع ، تحولات اساسی همچنان مرزهای این موضوع جذاب را تحت فشار قرار می دهند.

فیزیک خلاuum – اصطلاحات اساسی
واحدهای فشار

واحد فشار خلاuum چیست؟

در زیر یک نمای کلی از واحدهای اصلی فشار و تبدیل واحدهای فشار آورده شده است:
واحدهای فشار و تبدیل ها

 

محدوده های خلاAC

در علوم خلاuum تقسیم دامنه فشار به پنج رژیم فردی معمول است:

خلا R خشن (یا کم) (R): جوی تا 1 mbar

خلا متوسط ​​(یا خوب) (MV): 1 تا 10–3 mbar

خلا High زیاد (HV): 10–3 تا 10–7 mbar

خلاuum فوق العاده زیاد (UHV): 10–7 تا 10–12 mbar

خلا High شدید (XHV): بیش از 10-12 mbar.

این تقسیم بندی ها تا حدودی خودسرانه است ، و رشته های مختلف مهندسی از تعاریف خاص خود استفاده می کنند ، یعنی شیمی دانان اغلب از طیف مورد علاقه خود (100 تا 1 mbar) به عنوان “خلا inter میانی” یاد می کنند ، در حالی که برخی از مهندسان ممکن است خلا را “کم فشار “یا” فشار منفی “.

 

انواع جریان
فناوری خلاuum معمولاً با سه نوع جریان همراه است: جریان ویسکوز یا پیوسته. جریان مولکولی و یک محدوده انتقالی بین این دو معروف به جریان Knudsen.

جریان ویسکوز (یا پیوسته) در محدوده خلا rough خشن یافت می شود و با تعامل نزدیک مولکول ها تعیین می شود. سه زیرشاخه جریان چسبناک وجود دارد: “جریان آشفته” (اگر حرکت گرداب در روند جریان ظاهر شود) ؛ “جریان پوزویل” که در آن لایه ها روی یکدیگر می کشند (که این اغلب در خلا ها وجود دارد). و “جریان خفه” که هنگام تخلیه مخازن خلاuum یا در صورت نشت وجود دارد.

وقتی مولکولها بتوانند آزادانه حرکت کنند ، بدون هیچ گونه تداخل متقابل ، جریان مولکولی در خلاuum زیاد و فوق العاده زیاد (UHV) غالب است. جریان مولکولی در جایی وجود دارد که میانگین مسیر آزاد یک مولکول ƛ تعریف شده به عنوان میانگین مسافت طی شده توسط مولکول ها بین برخوردها) بسیار بزرگتر از قطر لوله است.

جریان نودسن محدوده انتقالی بین جریان چسبناک و مولکولی است. این در محدوده خلا متوسط ​​است که در آن طول مسیر آزاد یک مولکول مشابه قطر لوله است.

نمودار جریان در خلا

در جریان چسبناک ، حرکت ترجیحی مولکول های گاز یکسان با جهت ماکروسکوپی جریان گاز خواهد بود ، زیرا ذرات به طور فشرده بسته بندی شده اند و بسیار بیشتر از دیواره های مرزی با یکدیگر برخورد می کنند. با این حال ، در جریان مولکولی ، ذراتی که با دیواره ها برخورد می کنند غالب هستند.

در خلاuهای خشن ، برخورد ذرات گاز غالباً اتفاق می افتد ، در حالی که در خلا vacهای زیاد و بسیار زیاد ، برخورد ذرات گاز با دیواره های ظرف غالب است.

 

رفتار
تمام اتصالات بین مصرف سیستم پمپ و محفظه منجر به کاهش سرعت پمپاژ می شود. جریان pV از طریق هر عنصر لوله کشی مورد نظر ، مانند لوله یا شیلنگ ، دریچه ها ، نازل ها ، دهانه های دیواره بین دو رگ و غیره ، با

جریان سرعت پمپاژ از طریق معادله

در اینجا Δp = (p1 – p2) دیفرانسیل فشار بین انتهای ورودی و خروجی عنصر لوله کشی است. ضریب تناسب C به عنوان مقدار رسانایی یا به سادگی “رسانایی” تعیین می شود. در محدوده جریان مولکولی ، C یک ثابت است که مستقل از فشار است. در محدوده جریان انتقالی و چسبناک ، برعکس ، به فشار بستگی دارد. در نتیجه ، محاسبه C برای عناصر لوله کشی باید به طور جداگانه برای محدوده فشار فردی انجام شود.

از معادله فوق اغلب به عنوان “قانون اهم برای فناوری خلا” یاد می شود که در آن qpV با جریان ، Δp ولتاژ و C با مقدار هدایت الکتریکی مطابقت دارد. مشابه قانون اهم در علم الکتریسیته ، مقاومت در برابر جریان

به عنوان مقدار متقابل ارزش هدایت معرفی شده است:

عکس – 7

بنابراین می توان معادله را به صورت زیر نوشت:

جریان سرعت پمپاژ از طریق معادله

اگر اجزا به طور موازی به هم متصل شوند ، موارد زیر اعمال می شود:

عکس – 9

برای اجزای متصل به صورت سری موارد زیر اعمال می شود:

عکس – 10

 

محدوده های فشار استفاده شده در فن آوری خلاAC و مشخصات آنها
دامنه های فشار مورد استفاده در فناوری خلا و خصوصیات آنها

 

برای اطلاعات بیشتر در مورد ویژگی های مختلف ، روی لینک زیر کلیک کنید تا کتاب الکترونیکی ما را بارگیری کنید:

کتاب اصول تولید خلا generation
تولید خلاuum
پارامترهای پمپ
سرعت پمپاژ
معادله سرعت پمپاژ (جریان میزان ولتاژ) در سیستم خلاuum

سرعت جریان حجم (qV) یا سرعت پمپاژ (S) سرعت جریان حجمی حجم (خالص) یا حجم گاز تخلیه شده در واحد زمان (m3 / s ، l / s ، cfm ، m3 / h…) است. این در ورودی پمپ اندازه گیری می شود و به گونه های گاز ، بخار و غیره بستگی دارد.

 

توان پمپ
ظرفیت پمپاژ (توان خروجی) برای پمپ برابر است با جریان جرم از طریق پورت ورودی پمپ:

How do you define a vacuum system?

How do you define a vacuum system?

How do you define a vacuum system?

In basic terms the pressure of a gas is provided by the physical presence (and the movement) of molecules. By reducing the number of molecules and/or their natural tendency to move, the pressure of a gas is reduced. For this explanation, any pressure that is less than normal atmospheric pressure is indicative of a vacuum.

In the world of vacuums, there are significant differences between those at the lower end of the spectrum and those that occupy the higher (i.e. high vacuum) levels. In terms of definitions: vacuums that range between atmospheric pressure and 1 mbar are known as “rough” vacuums, whilst pressures from 1 to 10-3 mbar are known as medium vacuums. Thereafter, the vacuum definitions progress from high to ultra-high vacuums (UHVs) through to extremely high vacuums (XHVs) and range from 10-3 to 10-12 mbar.

How to choose the right vacuum pump for your application

Choosing the right vacuum pump is not an easy undertaking. However, before embarking upon the vacuum simulation process, there is a fundamental truth which needs to be accepted: no single pump will match all your requirements or expectations. Nevertheless, the process (should) start with a clear view of the vacuum range you are trying to obtain, as well as the use to which the vacuum will be put (which in itself will provide an indication of the capacities required). From this basic bedrock of requirements stretches out a further series of “stepping stones” (some significant, others less so) including noise and vibration considerations, ease of maintenance, up-front and on-going costs, the size (i.e. footprint) of the pump itself, its resistance to shock, tolerance to particle intrusion and whether oil contamination would be an issue. By scrutinising this menu of requirements and restrictions, the vacuum engineer ought to be able to hone-in onto the most suitable vacuum pump for the task in hand.

There are a large number of vacuum pumps which cater for the lower (i.e. rough and medium) vacuum range, including the diaphragm pump at one end of the spectrum through to the screw, rotary and roots pumps at the medium vacuum end.

The types of pumps employed for rough and medium vacuums (when compared to high through to XHV pumps) are fairly simple in terms of the vacuum system operation. However, that is not to underestimate the precise engineering required (or indeed the science) behind their workings. Furthermore, it should not be forgotten that many of these pumps are employed as fore (or backing) pumps, which are employed to “charge” higher level vacuum pumps. Without the benefit of such fore-pumps, these higher vacuum units would at best – operate sluggishly and slowly, and at worst – not at all.

Diaphragm pumps, which operate from 103 to 1 mbar, employ a rod which oscillates backwards and forwards compressing the gas contained within a flexible pipe/chamber. This oscillation activates (alternatively) either an inlet or an exit valve.

Diaphragm pump

 

Roots pumps employ two counter-rotating, interconnecting units rotating within a chamber. Gas enters through the intake flange and is “pinched” between the two rapidly rotating units and the chamber wall, and is then expelled through the exhaust port.

 

Roots booster pump

 

Scroll pumps use two inter-wound Archimedean spiral-shaped scrolls (one fixed, whilst the other orbits eccentrically) to pump or compress liquids/gases. Scroll pumps are used where clean, dry vacuum pumping is required.

 

Scroll pump cross section

 

Rotary vane pumps work in the following manner: an offset rotor (fitted with vanes that slide in and out of their housing) rotates within a chamber. The vanes, which seal against the inside of the circular chamber, “trap” in a quantity of gas which enters through an inlet port. As the rotor rotates, the volume contained between the vanes and the inside surface of the chamber decreases, so the pressure of the “captured” gas likewise decreases, until it exits through the outlet port.

 

Rotary van pump

 

Screw pumps employ two screw rotors which are engineered to rotate “in on each other”, thereby trapping the gas in the void between the “screws” of their rotors. As they rotate, the void between the screws decreases which not only compresses the gas, but also forces it towards the exit portal.

 

Multistage roots pump

 

 

High & Extremely-High Vacuum Pumps

The high-vacuum, UHV and XHV range of pumps are by-and-large dominated by four completely different genres: the turbomolecular pump, the ion getter pump, the cryo pump and the diffusion pump.

Turbomolecular pumps use a very fast spinning rotor not dissimilar to a multi-bladed turbine. The high-speed impact of blades directly onto gas molecules “directs” these molecules towards the “exit” part of the chamber.

 

turbomolecular pump

 

Ion getter pumps are effectively repeat units of penning cells sustaining a plasma discharge. Once initiated the discharge. A high potential accelerates the electron toward an anode, but a high magnetic field causes a spiral motion. A dense electron cloud becomes trapped in the anode cylinder. Many ionizing collisions occur with gas molecules. The positive ions are attracted toward the cathode where they can become embedded and causes a sputtering of titanium from the cathode. This active layer pumps molecules by gettering.

 

IZ_GAMMA_3 cropped-1

 

Cryo pumps either condense or absorb gases within a three-stage, but two-part vacuum chamber; there are no moving parts. The vacuum is acquired using low-temperatures, provided by a dual-stage cold head. The two functions (condensation and adsorption) operate in parallel.

Diffusion pumps use a directed high speed vapour jet to direct gas molecules in the pump throat down into the bottom of the pump and out to the exhaust. They were named because the design was based on the fact that gas cannot diffuse against the vapor jet, but will be carried with it to the exhaust.

diffusion pumps

Interested in learning more about the different vacuum pumping technologies? Then why not download our eBook:

 

 

Vacuum System Simulation & Design

Choosing the right vacuum pump, may seem like a daunting (long-winded and costly) exercise–which is where engineering simulation comes in. By putting values to each uncertainty and sign-posting every decision node, simulation has taken much of the wasteful cost and iterative guesswork out of what has traditionally been the tortuous process of vacuum pump and vacuum simulation.

Engineering simulation (or modelling) is a well-established practice and methodology whereby a substitute for physical experimentation is created, allowing mathematical values to be calculated and then employed to describe how a system and/or a process may (or may not) perform.

This table-top, computer assisted exercise is conducted before any components are purchased, and before the system/process path and sequence have been confirmed. In its simplest terms, simulation/modelling can identify problems and anomalies in the design stage, thus eliminating the orthodox but out-dated and wasteful “design-build-test-redesign” cycle.

The technical characteristics of the various components of a system (that may be employed) are put together into a “trial” system, and a simulated performance is then computer-run to ascertain a number of parameters, including whether: the components are compatible; the system produces the required outcome; the entity operates safely; the results are reliable/repeatable; and if component substitution could produce better results. Furthermore, simulation can highlight any weaknesses (either in components or configurations), as well as providing an indication of any process/system.

 

The Challenges & Implications of Vacuum Simulation and Operation

The major advantage of engineering simulation is that all this (pre-work) can be carried out without having to go to the expense of actually purchasing expensive components (which may prove to be unsuitable or redundant) or, indeed, having to engineer/assemble the system at this embryonic stage.

It must be appreciated that vacuum simulation is not without its drawbacks.

Vacuum simulation calculations assume that the system is in a steady state. However, whilst such steady state simulation is fast, stable and accurate for simple system models, it fails to account for the misconception that throughput is in fact not constant throughout the system. In simple cases this disparity creates an acceptably small error, but in more complex systems, the error can be significant. Additionally, such “steady state models” are not suitable for systems with dynamic pumps, or for primary pumps/secondary booster combinations, which slow down at high-inlet pressures.

Furthermore, it must be appreciated that, as with many procedures, there is never a true substitute for “the real thing”. Whilst simulation will – at the very least- “shave off” some of the imperfections of a system or poor/incompatible item choices, there is really no cast iron guarantee that additional refinements or re-engineering of components and processes will not further perfect the final system.

Need help with your vacuum simulation project? Get in touch with our experts today for a free no-obligation consultation:

 

 

Vacuum Simulation Tools

There are a number of specialist simulation software tools available to the vacuum fraternity.

PumpCalc is a simulation package for “simple systems” (i.e. those that consist of a chamber, a foreline and a pump set), with the “pressure” time from pump output to the chamber being small enough so that speed and conductance are approximately constant. Whilst PumpCalc is best suited for simple systems, it can still be used on more complex systems, if symmetry can be used to simplify the entirety.

TransCalc is a network-based computational simulation software package for the design of vacuum systems. TransCalc is based upon duct-flow prediction techniques which provide a solution across all pressure ranges (including turbulent, compressable and transitional flow). Compared to steady-state models, TransCalc uses fewer primary assumptions about the system, calculates pipe flows based on whole-system throughput and, furthermore, modifies pressures by conserving throughput over a short time interval.

Pascal is a smart simulation tool enables the engineering of a flow-optimisation pump system using empirical data gained from existing pumps, which is coupled with data from the components required to complete the vacuum system, and then through simulation allows the study of three-dimensional molecular flow through the whole unit. Then, by using existing CAD data the simulation software can calculate the characteristics of the entire vacuum system, allowing flow engineering to be optimised.

Pascal simulation software

MolFlow is a Monte-Carlo simulator package developed at CERN, which provides insight into the behaviour of vacuum systems. MolFlow can show the distribution of the number of gas bounces, the flight distance and the flight time of test particles.

VacSim is a PC-based software simulation package which uses the hermetic capture of a vacuum system and is able to predict/calculate how the system pressure varies with time, throughput volumes, pump speed and oil back-streaming. VacSim is able to produce pump-down curves, show the impact of bakeout regimes, illustrate the impact of (construction) material and demonstrate what difference a pump change will make.

VacSim is perhaps not as sophisticated as some vacuum simulation packages but makes up for this by its inherent simplicity and its ease-of-use.

COMSOL can trace its development from 1986 at the Royal Institute of Technology in Stockholm, Sweden. It is used for vacuum system simulation including those used in semi-conductor processing, particle acceleration and mass spectrometers. Small channel applications (such as shale gas exploration and gas flow in nano-porous materials) can also be simulated.

ANSYS is a stress analysis CAD-type finite element (FE) analysis software package that provides a multi-coloured graphic image that can assist in the balancing of rotors, seismic simulation, model analysis, non-linear stress (i.e. creep and/or fatigue modelling), all of which are important in ensuring product reliability and safety. In addition to traditional stress analysis, ANSYS also has a thermal capability that provides a visual model of thermal distortion in pump components, evaluates cooling (thus highlighting cool spots which can lead to condensation), and enables multi-physics modelling (by coupling stress and magnetic analysis).

VACUUM APPLICATIONS A KALEIDOSCOPE OF POSSIBILITIES

VACUUM APPLICATIONS: A KALEIDOSCOPE OF POSSIBILITIES

With the development of more sophisticated pumps capable of producing ever higher vacuum, the uses to which vacuums are being put have mushroomed, and now encompass a wide range from scientific research to food technology to semiconductor fabrication.

R&D is a significant “client” for vacuum technology, of which the most exciting involves the study of particle physics, conducted in particle accelerators (or colliders). These machines use huge electromagnetic fields to accelerate protons to velocities approaching the speed of light, focused into a fine beam, and then monitored from their collision with other particles.

The world’s most powerful particle accelerator, the Large Hadron Collider, is run by Conseil Européen pour la Recherche Nucléaire (CERN), and occurs within a series of tunnels that cross the border of France and Switzerland. High-speed beams of protons are channelled into a detection chamber where they collide with a proton “cloud” contained within an ultra-high vacuum. The resulting “exotic matter” that spills out of such collisions are short-lived but, nevertheless, the decay products can reveal the sub-atomic building blocks that control almost everything in our Universe…but none of this would be possible without the ability to create (and control) an ultra-high vacuum.

Large Hadron Collider (LHC) ultra-high vacuum tubeshttps://vacuumpumps.ir

 

Nuclear fusion occurs when two atoms combine to form a new atom, with the spare neutron that is “left over” providing energy that can be harvested for re-use. To get such atoms to combine (and release their spare energy) they need to be fired into plasma where temperatures of approximately 150 million°C overcome ion-repulsion and force them together. However, the machinery and knowledge associated with vacuum technology have only recently become available to elevate fusion to possible viability.

Whilst this fusion process occurs naturally in the sun, here on Earth, it must take place within a vessel using large-scale systems that ensure ultra-high vacuums in the reactor’s large vessel and the cryogenic system surrounding the superconducting magnetic field coils. In order to investigate and build a prototype fusion reactor, the International Thermonuclear Experimental Reactor (ITER) consortium was established to prove the feasibility of fusion as a large-scale and carbon-free source of energy.

 

International Thermonuclearhttps://vacuumpumps.ir Experimental Reactor (ITER) cross section

Source: ITER

 

Space Research

Vacuum science has been integral to major scientific advancements, including those associated with space research (and in particular, the detection of gravitational waves and black holes), by employing ultra high vacuum (UHV) levels.

Gravitational waves are ripples in space-time that are caused by violent processes such as exploding stars, collisions between neutron stars or the merging of black holes.

In order for gravitational waves to be detected in an interferometer (consisting of light storage arms), UHV conditions are needed. However, to operate effectively whilst maintaining direction, gravitational wave detectors must maintain ultra-high vacuum conditions (because sound waves cannot exist within a vacuum).

Click here to read our blog on Vacuum Technology for Space Simulation Chambers. 

 

gravitational wave detectors 1https://vacuumpumps.ir

 

Vacuum pumps are therefore an essential part of gravitational wave detection systems. As pressure ranges down to 10-09 mbar must be obtained, the most common vacuum pumps employed are magnetic turbomolecular, ion getter, cryo and “dry” fore-vacuum pumps.

The first image of black holes initiated the notion of them as a volume of space where their gravity is so extreme that neither fast moving particles nor light can escape. However, as black holes do not emit visible light, astronomers were unable to capture clear pictures of them. With advancements in vacuum technology, this is no longer the case.

 

How are black holes detected - 650 x 432https://vacuumpumps.ir

 

From a quantum perspective, the existence of black holes suggests that these “space vacuums” are not completely empty, and that in fact a black hole’s strong gravitational field fluctuates. With recent observations, as well as the progression of vacuum technology seen in telescopes and gravitational wave detectors, the nature of black holes will enable researchers to make new predictions and discoveries about the Universe and its origins.

 

 

Analytical Instruments

One of the most ubiquitous uses of vacuum pumps in the laboratory is in mass-spectrometry (MS). The pumps associated with such MS units are at the vanguard of the high-tech vacuum industry in terms of automation, control, compactness, resolution, efficiency, quiet operation, low-maintenance and cost effectiveness.

MS enables the near-immediate identification and measurement of thousands of types of molecules (e.g. metabolites, lipids, proteins, small molecules etc.), whilst also providing a detailed picture of how cells and tissues respond to drug treatment, but without the use of expensive reagents.

Furthermore, by combining MS with other technologies, it has been possible to make significant advances in a number of important medical fields including: the characterisation of advanced cell models; biomarker identification; drug distribution/tissue penetration; isotope tracing; as well as observing spatial changes in drug and metabolite distribution. Such MS developments have helped to unravel the mysteries of effective drug treatments and bio-medical science in general…and yet they all rely upon the humble vacuum pump.

A residual gas analyser (RGA) is a small MS which can monitor vacuum quality by detecting (and measuring) minute traces of impurities in a low-pressure gaseous environment. RGAs effectively identify the chemical components of the gas within a vacuum, by ionising the various molecules present to create ions before determining their mass-to-charge ratio.

 

Residual gas analysershttps://vacuumpumps.ir

 

RGAs are employed in vacuums where residual gas species need to be identified and where process conditions need to be monitored or controlled. RGAs play an important part in numerous fabricating processes, such as coating processes, vacuum furnaces and basic R&D.

KATRIN (Karlsruhe Tritium Neutrino Experiment) is a programme to measure the mass of the electron anti-neutrino, with sub-eV precision—in order to answer one of neutrino physics’ most critical questions: “What is the absolute mass of neutrinos, and why are they so important?”

 

Transport of KATRIN's main spectrometerhttps://vacuumpumps.ir

Source: Karlsruhe/KIT Katrin

Neutrinos are probably the most fascinating species of elementary particles, and indeed are referred to as the “ghost particles of the Universe”. Although neutrinos are the lightest particles in our Universe, on a grander scale they act as “cosmic architects”. In many ways one can think of neutrinos as the “DNA of matter”.

Since neutrinos have no electrical charge, their energy is measured against the shape of the electron spectrum generated by a tritium-β-decay, with measurements taken using an electrostatic spectrometer. Due to the necessity for high sensitivity, these spectrometer units have to operate in an absolute ultra-high vacuum (UHV) of nearly 10-11 mbar to avoid “false” readings generated by residual atoms that have been ionised by cosmic radiation. KATRIN’s 200-ton spectrometer with a volumeof 1,230 m3, is one of the world’s largest UHV vessel.

Another instrument used for vacuum measurement is the mercury barometer. Learn about the figure behind this here.

Wherever and whenever a vacuum needs to be created, it is essential to ensure its integrity (i.e. the “tightness” of the system), if not then time is squandered, and effort is pointlessly spent trying to create a vacuum in an “open system” which could never support a vacuum in the first place.

The only credible method for vacuum leak detection smaller than 1×10-6 mbar*l/s is with a helium leak detector of which there are four methods: the integral (sample under pressure) method requires the chamber to be placed inside a gas-proof unit–not always a possibility–and either internal or externally pressurised. Whereas in the local (sample under vacuum) method the chamber is either internally pressurised with helium or internally evacuated, with helium generously sprayed onto the surface of the chamber at likely leak prone points. In all four tests, helium enters the leak detector via possible leak points and is passed to the spectrometer for analysing.

 

Multiple Applications

Vacuum insulated glazing is an emerging technology in the field of energy efficient buildings, aimed at meeting the severe thermal performance requirements of net-zero energy windows. This is achieved by creating (and maintaining) a vacuum between panes of glass, (so that no gas/air enters this void). This maximises thermal efficiency and sound insulation.

Triple-vacuum insulated glazing (TVIG) has the ability to reduce thermal heat flow between the warm and cold-side of a window, i.e. it provides high thermal insulation (or lower U-values) by approximately 88.2% when compared with triple-air filled glazing. TVIG is constructed with three sheets of 4mm-thick glass, with an evacuated cavity of less than 10-3 mbar vacuum.

vacuum insulated buildinghttps://vacuumpumps.ir

Throughout mankind’s recent evolution, the desire to perfect transportation has galvanised scientists and engineers towards change and innovate, such as that provided by the “Hyperloop”.

Simply put, the Hyperloop utilises a vacuum in a sealed-tube along which a passenger capsule travels. Using a vacuum significantly reduces air resistance. When this is coupled with low-friction propulsion and levitation technologies (based on air cushion or magnetic levitation) within a closed system, it sends the capsule shooting “bullet-like along the rifle barrel” of the tube at ultra-high speeds, with the absolute minimum of effort.

A recent paper outlined that, in this way, the Hyperloop scheme could propel passengers at 1,200km/h along a 560km route in only 35 minutes (i.e. considerably faster than trains, and less environmentally damaging than aircraft).

Hyperloop vacuum tube design concepthttps://vacuumpumps.ir

However, an essential part of the whole Hyperloop scheme is without doubt, creating a vacuum of 1 mbar which although “not rocket science”, needs to be “scaled-up”. For example, the vacuum system of a 200km length and a 4m-diameter tube (i.e. 2.5 million m3), requires considerable expertise and understanding of vacuum physics, material knowledge, as well as vacuum simulation.

Fresh food products rapidly deteriorate unless some way can be found to preserve them. There are two different processes employing food packaging vacuums.  In vacuum microwave drying (VMD), products are heated by microwave to between 35 and 60oC whilst the vacuum pump keeps the pressure around 10 mbar. The water content then evaporates. In freeze drying (FD), the products are cooled to between -20 and -40oC and the water sublimates from the solid phase at pressures below 0.1 and 1 mbar. This process is also used for freeze drying coffee and pharmaceutical products.

Because vacuum food packing removes the air from the package before sealing it, their “shelf life” is significantly increased as almost all oxygen is removed, which restricts the growth of bacteria and fungi. Using vacuum packing, the lifetime of packed beef is about 3 weeks, while for pork it’s approximately 10 days.

shutterstock_82623328https://vacuumpumps.ir

Vacuum technology is used extensively in numerous medical applications: the manufacture of prosthetics, the coating of medical devices, magnetic resonance imaging, proton therapy and cyclotrons.

Vacuum equipment is used in two (but essentially different) parts of the “Kroll” titanium manufacturing process. Titanium is stronger and more durable than steel but is 45% lighter. Furthermore, titanium is non-ferromagnetic, which allows patients with artificial body parts (such as orthopaedic pins, rods, plates, and joints) to be safely scanned by MRIs and NMRIs. Most notably, titanium is one of the only metals that will effectively bond with human bone and tissue.

While X-rays are mainly used to examine bones, magnetic resonance imaging, (MRI) is used to look at soft tissues, such as organs, ligaments, the circulatory system, and spinal cord. Most MRI scanners employ large superconducting magnets cooled (to near absolute zero) by cryogenic fluids. Once in the superconducting state, current can flow through the (zero resistance) magnet coils indefinitely without the need for a power source. The magnet is housed in a cryostat, which is a vessel built inside another vessel. Between the inner and outer vessels, a vacuum plays a critical part in restricting heat from entering the cryogenic fluid.

shutterstock_94210177https://vacuumpumps.ir

Proton therapy is the most advanced form of radiation therapy today, but unlike traditional radiation therapy, it directly treats cancerous tissue without harming surrounding healthy tissue and organs. Proton therapy’s precise delivery of radiation is due to the way in which protons release their energy as they travel through the body. However, to create the necessary energy and velocity for treatment, protons are sent through a vacuum tube into a super high-speed accelerator known as a cyclotron, that speeds up the protons. After exiting the cyclotron, the protons continue (in the vacuum tube) through more magnet-rings that steer and focus the beam. Similar to MRI, many of the cyclotron magnets are superconducting and housed in a cryostat, with similar cooling principles using liquid helium and insulated by vacuum.

Vacuum coating is used to deposit layers of material (atom-by-atom or molecule-by-molecule) onto a solid surface within a vacuum. The deposited layers can range from a thickness of one atom, up to millimetres. Multiple layers of different materials can be employed, for example, to form optical coatings. In this way, many medical devices placed inside the human body (i.e. pacemakers, stents, epidural probes, defibrillators etc.) are surrounded with special film coatings to protect the body from the leaching of metals or plastics and protect the device from body fluids.

One of the most widely used materials to coat these devices is Parylene (which provides an ultra-thin, pinhole-free barrier) and is deposited on the medical devices through a vacuum deposition process. Parylene coatings are applied to medical devices inside a vacuum chamber using vapour-deposition polymerisation (VDP). The Parylene is deposited on the device building up one monolayer at a time, so it uniformly coats the entire device, penetrating even the device’s smallest cracks and crevices.

Ultra-centrifuges are super-powered centrifuges that rotate at speeds faster than 200,000 rpm (creating up to 100,000 g) and can separate out extremely tiny particles in solution. However, as they spin so quickly, the rotors reach extremely high temperatures causing convection currents that disrupts solid: liquid separation. To avoid this, rotors in ultra-centrifuges are housed within a vacuum. The elimination of air resistance allows the rotors to be spun at very high-speeds, aids separation, as well as reducing the power input needed.

Place sample in centrifugehttps://vacuumpumps.ir

Whether you work in the R&D field, with analytical instruments, or using industrial and process vacuum – you will need a vacuum system that ensures safe operation, is highly reliable and built-for-purpose to meet your operating requirements.