

# Optimization of non-evaporable getter coating for accelerator beam pipe

# Dr. Oleg B. Malyshev Senior Vacuum Scientist

Dr. Reza Valizadeh Senior Surface Scientist



ASTeC Vacuum Science Group, STFC Daresbury Laboratory, UK

WS-63, 14-19 September 2010, Ávila, Spain





### Outlet

- Introduction
- Pumping property
  - Film deposition
  - Surface analysis
  - NEG activation procedure
  - Pumping properties measurements
  - Activation temperature

- Sticking probability and capacity for different NEG coatings
- Desorption properties
  - How to reduce ESD
  - What film is needed
  - What achieved
- Conclusions





### What are usual considerations for vacuum

Required pressure P is defined by gas desorption Q in the vessel and effective pumping speed  $S_{eff}$ .

In a simple case it is

$$P = \frac{Q}{S_{eff}} = Q\left(\frac{1}{S} + \frac{1}{U}\right)$$

$$Q = qA + \eta_{\gamma}\Gamma + \eta_{e}I_{e} + \eta_{ion}I_{ion}$$

$$\int$$
Thermal, photon, electron and ion
stimulated desorption





### Usual accelerator vacuum chamber

- Long tube with length *L* >> *a*, where *a* transversal dimension
- Average pressure depends on vacuum conductance u(L,a) of the beam vacuum chamber







### Vacuum chamber cross sections

Vacuum chamber with an antechamber Beam pipe Circular or elliptical for larger vacuum conductance, U4 mm  $\leq$  d, a, b  $\leq$  200 mm b d а **Distributed pumping** In dipole magnetic field With NEG strips (LEP in CERN) <u> ተተተተተተተተተተተተተተ</u> ተተተተተተተ ተተተተተ



### Two concepts of the ideal vacuum chamber

### **Traditional:**

- <u>surface which outgasses as little as</u> <u>possible ('nil' ideally)</u>
- surface which *does not pump* otherwise that surface is contaminated over time

### **Results in**

- Surface cleaning, conditioning, coatings
- Vacuum firing, *ex-situ* baling
- Baking in-situ to up to 300°C
- Separate pumps

### 'New' (C. Benvenuti, CERN, ~1998):

- <u>surface which outgasses as little as</u> <u>possible ('nil' ideally)</u>
- a surface which *does pump*, however, will not be contaminated due to a very low outgassing rate

### **Results in**

- NEG coated surface
- There should be no un-coated parts
- Activating (baking) *in-situ* at **150-180°C**
- Small pumps for C<sub>x</sub>H<sub>y</sub> and noble gases







### Stainless steel vs. NEG coated vacuum chamber under SR

Centre

**Stainless steel** 

**TiZrV** 





ASTeC



### **NEG coating for accelerators**

- First used in the ESRF (France);
- ELETTRA (Italy);
- Diamond LS (UK);
- Soleil (France) first fully NEG coated;
- LHC (Switzerland) longest NEG coated vacuum chamber;
- SIS-18 (Germany);
- and many others.
- NEG film capacity for CO and CO<sub>2</sub> is ~1ML:
  - If  $P = 10^{-9}$  mbar then 1 ML can be sorbed just in ~10<sup>3</sup> -10<sup>4</sup> s;
  - Lab measurements of different NEG coatings often don't repeat CERN's data on sticking probability and capacity;
  - However, NEG coated parts of accelerators work well.



## **NEG coating for accelerators (2)**

- What is required:
  - Input data for accelerator design:
    - $\eta(D,E,T_a)$ ,  $\alpha(M, T_a)$ , pumping capacity;
  - Better understanding:
    - what and why;
    - practical 'do's and 'don't's;
  - Further development of this coating:
    - lower  $\eta$ , T<sub>a</sub>, SEY;
    - higher α(M), pumping capacity;
    - optimising for an application.



### What NEG coating does

- Reduces gas desorption:
  - A pure metal film ~1-µm thick without contaminants.
  - A barrier for molecules from the bulk of vacuum chamber.
- Increases distributed pumping speed, S:
  - A sorbing surface on whole vacuum chamber surface

 $S = \alpha \cdot A \cdot v/4;$ 

- where  $\alpha$  sticking probability,
  - A surface area,
  - v mean molecular velocity





#### **Cylindrical magnetron deposition**





### ASTeC

# Region scan of XPS core levels of Ti, Zr, C and V of a Ti-Zr-V film (surface composition and chemical bounding)





### **RBS (film compositions in bulk)**





### The EDX analysis for determination of film composition





### SEM images of films (film morphology)

### columnar

### dense



O.B. Malyshev, R. Valizadeh, J.S. Colligon et al. J. Vac. Sci. Technol. A 27 (2009), p. 521.

### Set-up for NEG pumping evaluation



ASTeC

Q

Membrane Gauae

O.B. Malyshev and K.J. Middleman. Vacuum 83 (2009), p. 976.

O.B. Malyshev et al. J. Vac. Sci. Technol. A 27 (2009), p. 321.





### **ASTeC** activation procedure



O.B. Malyshev, K.J. Middleman, J.S. Colligon and R. Valizadeh. J. Vac. Sci. Technol. A 27 (2009), p. 321.



# **NEG pumping properties**



Science & Technology Facilities Council

ASTeC



#### Titanium film deposited on Si test sample from a single Ti wire



Cylindrical Magnetron: Power = 60 W,  $P_{Kr} = 10^{-2}$  mbar, deposition rate = 0.14 nm/s, T = 120°C. Average grain size 100 – 150 nm.

19



#### Vanadium film deposited on Si test sample from a single V wire.



Cylindrical Magnetron: Power = 60 W,  $P_{Kr} = 10^{-2}$  mbar, deposition rate = 0.16 nm/s, T = 120°C. Average grain size 100 nm. Rhombohedral lattice structure.





### Hf film deposited on Si test sample from a single Hf wire.



Cylindrical Magnetron: Power = 60 W,  $P_{Kr} = 10^{-2}$  mbar, deposition rate = 0.16 nm/s, T = 120°C. Average grain size 100 – 150 nm. Hexagonal lattice structure.



### Zr film deposited on a Si test sample from a single Zr wire



Cylindrical Magnetron: Power = 60 W,  $P_{Kr} = 10^{-2}$  mbar, deposition rate = 0.14 nm/s, T = 120°C. Average grain size 100 – 150 nm. Hexagonal lattice structure.

100

# **Single metal pumping properties**





# Zr is best:

Lowest activation Temp. and highest capacity Hf

# Ti

V has highest activation temperature



#### Ti-V film deposited on Si test sample from twisted Ti an V wires.









Cylindrical Magnetron: Power = 60 W,  $P_{Kr} = 10^{-2} \text{ mbar}$ , deposition rate = 0.13 nm/s,  $T = 120^{\circ}\text{C}$ . Average grain size 50 - 100 nm. Hexagonal lattice structure.



#### Ti-Zr film deposited on Si test sample from twisted Ti an Zr wires



Cylindrical Magnetron: Power = 60 W,  $P_{Kr} = 10^{-2}$  mbar, deposition rate = 0.16 nm/s, T = 120°C. Average grain size 50 – 100 nm. Hexagonal lattice structure.





#### Zr-V film deposited on Si test sample from twisted Zr an V wires.



Cylindrical Magnetron: Power = 60 W,  $P_{Kr} = 10^{-2}$  mbar, deposition rate = 0.15 nm/s, T = 120°C. Average grain size **10 – 20 nm**.



# ASTeC Binary alloy pumping properties





### Zr-V is best Ti-Zr activation temperature is lower than for Ti-V

Zr-Hf was not studied



#### Ternary NEG film deposited on Si test sample from twisted Ti, V, Zr, and Hf wires and TiZrV alloy wire



Cylindrical Magnetron: Power = 60 W,  $P_{Kr} = 10^{-2}$  mbar, deposition rate = 0.12 nm/s, T = 120°C. Average grain size 5 nm. Hexagonal lattice structure.

# Ternary alloy pumping properties



ASTeC

Facilities Council



# Hf-Zr-V, Ti-Zr-Hf and Ti-Hf-V are comparable

**Ti-Zr-V** has the highest activation temperature



#### XRD of Ti-Zr-V film: alloy wire vs. twisted wires as target.



In Both cases there is only one broad peak near  $2\theta = 40^{\circ}$ The film is nearly amorphous.

### Twisted wires vs. alloy target: reducing Ta



R. Valizadeh, O.B. Malyshev, J.S. Colligon, V. Vishnyakov. Accepted by J. Vac. Sci. Technol. Aug. 2010.



#### Quaternary NEG alloy film deposited on Si test sample from twisted Ti, V, Zr, and Hf wires.



Cylindrical Magnetron: Power = 60 W,  $P_{Kr} = 10^{-2}$  mbar, deposition rate = 0.12 nm/s, T = 120°C. Very glassy structure.



# Quaternary alloy pumping properties





Ti-Zr-Hf-V is the best Hf-Zr-V, Ti-Zr-Hf, Ti-Hf-V and Zr are comparable Ti-Zr-V is lower Zr-V (best binary alloy) has the lowest activation temperature



### Pressure in the accelerator vacuum chamber

 $P \propto \frac{\eta}{\alpha}$ 

### where

- $\eta$  desorption yield
- $\alpha$  sticking probability

• Improving pumping properties is limited:

 $\alpha \leq 1$ .

- $0.005 < \alpha_{H2} < 0.01$
- $0.1 < \alpha_{CO} < 0.5$
- $0.4 < \alpha_{CO2} < 0.6$
- Reducing the desorption yields η
- . <u>in orders of magnitude</u> is a realistic task





### Average gas density in the ILC undulator: d=4 mm





### Reducing the gas desorption from the NEG coatings

- Main gases in the NEG coated vacuum chamber are H<sub>2</sub> and CH<sub>4</sub>
  - Only H<sub>2</sub> can diffuse through the NEG film under bombardment or heat
  - CH<sub>4</sub> is most likely created on the NEG surface from diffused H<sub>2</sub> and C (originally from sorbed CO and CO<sub>2</sub>)
  - Therefore the H<sub>2</sub> diffusion must be suppressed
    - Where H<sub>2</sub> come from?



### Reducing the gas desorption from the NEG coatings





## Reducing the gas desorption from the NEG coatings





### SEM images of films (film morphology)

columnar

### dense

### Best for pumping

### A first candidate for a barrier



O.B. Malyshev, R. Valizadeh, J.S. Colligon et al. J. Vac. Sci. Technol. A 27 (2009), p. 521.



### **Electron stimulated desorption**

Modified NEG pumping properties evaluation rig:

- To measure sticking probability  $\alpha$
- To measure electron stimulated gas desorption as a function of
  - Electron energy
  - Dose
  - Wall temperature (20-100°C)
  - Activation/bakeout temperature
- Can be used for samples with:
  - NEG coating
  - Low desorption coating
  - No coatings







# **Electron Bombardment**







### **Electron Stimulated Desorption (ESD) studies programme**

# • ESD as a function of

- Activation/bakeout temperature
- Electron energy
- Electron dose
- Coating density, morphology and structure
- Deposition conditions
- Substrate

# **Experimental procedure for NEG coated samples**



gy Centre



#### ESD: stainless steel vs non-activated NEG coated vacuum chamber





yield [molecules/electron]

#### ESD: stainless steel vs activated NEG coated vacuum chamber







WS-63, 14-19 September 2010, Ávila, Spain



# **Electron stimulated NEG activation**



# The electron stimulated NEG activation efficiency estimated as





### Normalised pressure P1 Columnar vs. Dense



 $\alpha_{c}(H_{2}) = 1.5 \alpha_{d}(H_{2}); \alpha_{c}(CO) = 1.5 \alpha_{d}(CO)$ 

WS-63, 14-19 September 2010, Ávila, Spain



Dose [electrons/m2]





### $\eta(E_{e})$ for different gases for NEG coating





## $\eta(E_{e-})$ for different gases for 316LN





Yield [Molecules/electron]

### $\eta(E_{e})$ for different gases for aluminium alloy





### **Conclusions:**

- ASTeC activation procedure minimises NEG poisoning from non-coated vacuum chamber components
- Role of element:
  - Zr-based highest sticking probability and capacity, lowers activation temp.
  - Ti-based lowest sticking probability and capacity, highest activation temp
- Role of grain size
  - Activation temperature reduces with a grain size die to increase the grain boundary density
- Quaternary alloy demonstrated the lowest activation temperature and best pumping properties;
  - Pure Zr film is good as well
- Alloy target is better than twisted wires
- The improvement and further development of NEG coatings requires
  - Intensive use surface analysis techniques
  - Evaluation under photon, electron and ion bombardment.



# **Conclusions (2):**

- An ESD set-up for tubular sample
  - Uniform bombardment along the tube
  - From both pumping and non-pumping samples.
- The ESD yields as a function of electron dose :
  - 316L stainless steel sample after bakeout at 250°C
  - Ti-Zr-V coated before NEG activation and after activation at 180°C and 250 °C.
  - Desorption yields from SS are comparable with earlier results from literature;
  - The initial desorption yields from NEG coating are 20 times lower for H<sub>2</sub>, 1000 times lower for CH<sub>4</sub> and 200 times lower for CO, the desorption yields for other gases below the installation sensitivity.
- The ESD yields as a function of electron energy:
  - were measured in the energy range between 40 eV and 5 keV.
  - a linear dependence was measured for most of gases
  - except for H<sub>2</sub>, for which the dependence is:  $\eta(E) \propto E^{2/3}$
- The electron bombardment induced pumping of the CO saturated NEG film was observed for a first time
  - this effect is similar to photon induced pumping of the NEG film observed earlier.





### Acknowledgments

# **Co-authors (team):**

ASTeC

- Dr. R. Valizadeh
- Mr. A. Smith
- Dr. K.J. Middleman
- Mr. A.N. Hannah
- Dr. S. Patel

MMU

- Prof. J.S. Colligon
- Dr. V. Vishnyakov



