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What are usual considerations for vacuum
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Required pressure  P is defined by gas 

desorption Q in the vessel and effective 

pumping speed Seff. 

In a simple case it is

Q

Pump, 

S (l/s)

P

U (l/s)

1 1

eff

Q
P Q

S S U

 
   

 

e e ion ionQ qA        

Thermal, photon, electron and ion 

stimulated desorption



Usual accelerator vacuum chamber

 Long tube with length L >> a, where a - transversal dimension

 Average pressure depends on vacuum conductance u(L,a) of 

the beam vacuum chamber
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Vacuum chamber cross sections
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Beam pipe 

Circular or elliptical

4 mm  d, a, b  200 mm

Vacuum chamber with an antechamber 

for larger vacuum conductance, U

Distributed pumping
In dipole magnetic field                                                          With NEG strips 

(LEP in CERN) 

d a

b



Two concepts of the ideal vacuum chamber

Traditional:

 surface which outgasses as little as 

possible (‘nil’ ideally)

 surface which does not pump

otherwise that surface is 

contaminated over time 

Results in

 Surface cleaning, conditioning, 

coatings 

 Vacuum firing, ex-situ baling

 Baking in-situ to up to 300C

 Separate pumps
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‘New’ (C. Benvenuti, CERN, ~1998):

 surface which outgasses as little as 

possible (‘nil’ ideally)

 a surface which does pump, 

however, will not be contaminated 

due to a very low outgassing rate  

Results in

 NEG coated surface

 There should be no un-coated parts

 Activating (baking) in-situ at 150-

180C

 Small pumps for CxHy and noble 

gases
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Stainless steel vs. NEG coated vacuum chamber under SR
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V.V. Anashin et al. Vacuum 75 (2004), p. 155.



NEG coating for accelerators

 First used in the ESRF (France); 

 ELETTRA (Italy); 

 Diamond LS (UK); 

 Soleil (France) – first fully NEG coated;

 LHC (Switzerland) – longest NEG coated vacuum chamber; 

 SIS-18 (Germany); 

 and many others. 

 NEG film capacity for CO and CO2 is ~1ML: 

 If P = 10-9 mbar then 1 ML can be sorbed just in  ~103 -104 s;

 Lab measurements of different NEG coatings often don’t repeat 

CERN’s data on sticking probability and capacity;

 However, NEG coated parts of accelerators work well.
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NEG coating for accelerators (2)

 What is required: 

 Input data for accelerator design: 

 (D,E,Ta), (M, Ta), pumping capacity;

 Better understanding: 

 what and why;

 practical ‘do’s and ‘don’t’s;

 Further development of this coating: 

 lower , Ta, SEY; 

 higher (M), pumping capacity;

 optimising for an application.
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What NEG coating does

 Reduces gas desorption:

 A pure metal film ~1-m thick

without  contaminants.

 A barrier for molecules from 

the bulk of vacuum chamber.

 Increases distributed 

pumping speed, S:

 A sorbing surface on whole 

vacuum chamber surface

S = Av/4;

where  – sticking probability, 

A – surface area, 

v – mean molecular velocity
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Vacuum      NEG  Subsurface   Bulk

Coating  Layers 



Deposition method

Planar magnetron deposition
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Cylindrical magnetron deposition
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Region scan of XPS core levels of Ti, Zr, C and V of a Ti-Zr-V film

(surface composition and chemical bounding)
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RBS (film compositions in bulk)
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The EDX analysis for determination of film composition
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SEM images of films (film morphology )

columnar dense

O.B. Malyshev, R. Valizadeh, J.S. Colligon et al. J. Vac. Sci. Technol. A 27 (2009), p. 521.



Set-up for NEG pumping evaluation

Test chamber 1 

(option)
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O.B. Malyshev and K.J. Middleman. 

Vacuum 83 (2009), p. 976.

O.B. Malyshev et al. 

J. Vac. Sci. Technol. A 27 (2009), p. 321.



ASTeC activation procedure
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O.B. Malyshev, K.J. Middleman, J.S. Colligon and R. Valizadeh. J. Vac. Sci. Technol. A 27 (2009), p. 321.



NEG pumping properties
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Pressure ratio P1/P2 measured during 

gas injection is used to estimate: 

initial sticking probability and  sorption capacity



Titanium film deposited on Si test sample from a single Ti wire 

Cylindrical Magnetron: 

Power = 60 W,  

PKr = 10-2 mbar,  

deposition rate = 0.14 nm/s,  

T = 120°C.

Average grain size 100 – 150 nm.  
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Vanadium film deposited on Si test sample from a single V wire. 

Cylindrical Magnetron: Power = 60 W,  PKr = 10-2 mbar,  deposition rate = 0.16 nm/s,  T = 120°C.

Average grain size 100 nm. Rhombohedral lattice structure. 
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Hf film deposited on Si test sample from a single Hf wire. 

Cylindrical Magnetron: Power = 60 W,  PKr = 10-2 mbar,  deposition rate = 0.16 nm/s,  T = 120°C.

Average grain size 100 – 150 nm. Hexagonal lattice structure. 
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Zr film deposited on a Si test sample from a single Zr wire

Cylindrical Magnetron: Power = 60 W,  PKr = 10-2 mbar,  deposition rate = 0.14 nm/s,  T = 120°C.

Average grain size 100 – 150 nm. Hexagonal lattice structure. 
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Single metal pumping properties
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Ti-V  film deposited on Si test sample from twisted Ti an V wires. 

Cylindrical Magnetron: 

Power = 60 W,  PKr = 10-2 mbar,  

deposition rate = 0.13 nm/s,  T = 120°C.

Average grain size 50 – 100 nm. 

Hexagonal lattice structure. 
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Ti-Zr film deposited on Si test sample from twisted Ti an Zr wires

Cylindrical Magnetron: Power = 60 W,  PKr = 10-2 mbar,  deposition rate = 0.16 nm/s,  T = 120°C.

Average grain size 50 – 100 nm. Hexagonal lattice structure. 
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Zr-V  film deposited on Si test sample from twisted Zr an V wires. 

Cylindrical Magnetron: Power = 60 W,  PKr = 10-2 mbar,  deposition rate = 0.15 nm/s,  T = 120°C.

Average grain size 10 – 20 nm. 
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Binary alloy pumping properties
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Ternary NEG film deposited on Si test sample from 

twisted Ti, V, Zr, and Hf wires and TiZrV alloy wire

Cylindrical Magnetron: Power = 60 W,  PKr = 10-2 mbar,  deposition rate = 0.12 nm/s,  T = 120°C.

Average grain size 5 nm. Hexagonal lattice structure. 

Ti-Hf-Zr twisted wire V-Hf-Zr twisted wire

Ti-Zr-V alloy wire Ti-Zr-V twisted wire
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Ternary alloy pumping properties
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XRD of Ti-Zr-V film: alloy wire vs. twisted wires as target.  

In Both cases there is only one broad peak near 2 = 40°

The film is nearly  amorphous.
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Twisted wires vs. alloy target: reducing Ta
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R. Valizadeh, O.B. Malyshev, J.S. Colligon, V. Vishnyakov. Accepted by J. Vac. Sci. Technol. Aug. 2010.



Quaternary NEG alloy film deposited on Si test sample from twisted Ti, V, Zr, and Hf wires. 

Cylindrical Magnetron: Power = 60 W,  PKr = 10-2 mbar,  deposition rate = 0.12 nm/s,  T = 120°C.

Very glassy structure. 
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Quaternary alloy pumping properties
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Pressure in the accelerator vacuum chamber

 Improving pumping 

properties is limited:

  1.

 0.005 < H2  < 0.01

 0.1 < CO  < 0.5

 0.4 < CO2 < 0.6

 Reducing the 

desorption yields 

.  in orders of magnitude

is a realistic task 
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P





where 

  - desorption yield

  - sticking probability



Average gas density in the ILC undulator: d=4 mm

35



Reducing the gas desorption from the NEG coatings

 Main gases in the NEG coated vacuum 

chamber are H2 and CH4

 Only H2 can diffuse through the NEG 

film under bombardment or heat

 CH4 is most likely created on the NEG 

surface from diffused H2 and C 

(originally from sorbed CO and CO2) 

 Therefore the H2 diffusion must be 

suppressed  

 Where H2 come from?
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Reducing the gas desorption from the NEG coatings

 Gas molecules are contained

 on the NEG coating surface

 after exposure to air

 inside the NEG coating

 trapped during deposition

 in subsurface substrate layer

 in the substrate bulk

Vacuum      

NEG  

Coating

Subsurface 

Layers 

Bulk
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Reducing the gas desorption from the NEG coatings

 Gas molecules are contained

 on the NEG coating surface

 after exposure to air

 minimise exposure to air 

 inside the NEG coating

 trapped during deposition

 purity of discharge gas

 background pressure

 in subsurface substrate layer

 substrate bakeout before NEG deposition

 in the substrate bulk

 vacuum firing

Vacuum      

NEG  

Coating

Subsurface 

Layers 

Bulk
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SEM images of films (film morphology )

columnar dense

Best for pumping                         A first candidate for a barrier

O.B. Malyshev, R. Valizadeh, J.S. Colligon et al. J. Vac. Sci. Technol. A 27 (2009), p. 521.



Modified NEG pumping properties 

evaluation rig:

 To measure sticking probability 

 To measure electron stimulated gas 

desorption as a function of

 Electron energy

 Dose

 Wall temperature (20-100C)

 Activation/bakeout temperature

 Can be used for samples with:

 NEG coating

 Low desorption coating

 No coatings

40WS-63, 14-19 September 2010, Ávila, Spain

Electron stimulated desorption 



Electron Bombardment

e-

e-

CH4

CO

H2

CO2

Filament:
Th/W, 
Th/Ir or 
Y/Ir
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Electron Stimulated Desorption  (ESD) studies programme

 ESD as a function of 

 Activation/bakeout temperature 

 Electron energy

 Electron dose

 Coating density, morphology  and  structure

 Deposition conditions

 Substrate
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Experimental procedure for NEG coated samples
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ESD: stainless steel vs non-activated NEG coated vacuum chamber
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ESD: stainless steel vs activated NEG coated vacuum chamber
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O.B. Malyshev, A. Smith, R. Valizadeh, A. Hannah. 

Accepted by J. Vac. Sci. Technol., Aug. 2010.

Baked to 250°C for 24 hrs                                 Activated to 180°C for 24 hrs
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Non-activated NEG

The electron stimulated NEG activation efficiency 

estimated as 7.9×10-4 < 1 < 2.4×10-3 [CO/e-]
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The electron stimulated NEG 

activation efficiency estimated as
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Normalised pressure P1 

Columnar    vs.      Dense
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αc(H2) = 1.5 αd(H2); αc(CO) = 1.5 αd(CO)
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ESD Yields 

Columnar    vs.      Dense



(Ee-) for different gases for NEG coating
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(Ee-) for different gases for 316LN
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(Ee-) for different gases for aluminium alloy
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Conclusions:

 ASTeC activation procedure minimises NEG poisoning from non-coated 

vacuum chamber components

 Role of element:

 Zr-based – highest sticking probability and capacity, lowers activation temp.

 Ti-based – lowest sticking probability and capacity, highest activation temp

 Role of grain size 

 Activation temperature reduces with a grain size die to increase the grain 

boundary density 

 Quaternary alloy demonstrated the lowest activation temperature and best 

pumping properties; 

 Pure Zr film is good as well

 Alloy target is better than twisted wires 

 The improvement and further development of NEG coatings requires 

 Intensive use surface analysis techniques

 Evaluation under photon, electron and ion bombardment. 
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Conclusions (2):

 An ESD set-up for tubular sample  

 Uniform bombardment along the tube 

 From both pumping and non-pumping samples.

 The ESD yields as a function of electron dose : 

 316L stainless steel sample after bakeout at 250°C

 Ti-Zr-V coated before NEG activation and after activation at 180°C and 250 °C. 

 Desorption yields from SS are comparable with earlier results from literature; 

 The initial desorption yields from NEG coating are 20 times lower for H2, 1000 times 

lower for CH4 and 200 times lower for CO, the desorption yields for other gases below 

the installation sensitivity.

 The ESD yields as a function of electron energy:

 were measured in the energy range between 40 eV and 5 keV. 

 a linear dependence was measured for most of gases 

 except for H2, for which the dependence is: (E)E2/3

 The electron bombardment induced pumping of the CO saturated NEG 

film was observed for a first time 

 this effect is similar to photon induced pumping of the NEG film observed earlier.  
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